643 research outputs found
Disease associated with equine coronavirus infection and high case fatality rate.
BackgroundEquine coronavirus (ECoV) is associated with clinical disease in adult horses. Outbreaks are associated with a low case fatality rate and a small number of animals with signs of encephalopathic disease are described.ObjectivesThe aim of this study is to describe the epidemiological and clinical features of two outbreaks of ECoV infection that were associated with an high case fatality rate.Animals14 miniature horses and 1 miniature donkey testing fecal positive for ECoV from two related disease outbreaks.MethodsRetrospective study describing the epidemiological findings, clinicopathological findings, and fecal viral load from affected horses.ResultsIn EcoV positive horses, 27% (4/15) of the animals died or were euthanized. Severe hyperammonemia (677 μmol/L, reference range ≤ 60 μmol/L) was identified in one animal with signs of encephalopathic disease that subsequently died. Fecal viral load (ECoV genome equivalents per gram of feces) was significantly higher in the nonsurvivors compared to animals that survived (P = .02).Conclusions and clinical importanceEquine coronavirus had a higher case fatality rate in this group of miniature horses than previously reported in other outbreaks of varying breeds. Hyperammonemia could contribute to signs of encephalopathic disease, and the fecal viral load might be of prognostic value in affected horses
Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease
Previous experiments have found that individuals with Alzheimer's disease (AD) show increased activity in prefrontal regions compared with healthy age-matched controls during cognitive tasks. This has been interpreted as compensatory reallocation of cognitive resources, but direct evidence for a facilitating effect on performance has been lacking. To address this we measured neural activity during semantic and episodic memory tasks in mildly demented AD patients and healthy elderly controls. Controls recruited a left hemisphere network of regions, including prefrontal and temporal cortices in both the semantic and episodic tasks. Patients engaged a unique network involving bilateral dorsolateral prefrontal and posterior cortices. Critically, activity in this network of regions was correlated with better performance on both the semantic and episodic tasks in the patients. This provides the most direct evidence to date that AD patients can use additional neural resources in prefrontal cortex, presumably those mediating executive functions, to compensate for losses attributable to the degenerative process of the disease.8 page(s
The life and miracles of kinetochores
Kinetochores are large protein assemblies built on chromosomal loci named centromeres. The main functions of kinetochores can be grouped under four modules. The first module, in the inner kinetochore, contributes a sturdy interface with centromeric chromatin. The second module, the outer kinetochore, contributes a microtubule-binding interface. The third module, the spindle assembly checkpoint, is a feedback control mechanism that monitors the state of kinetochore–microtubule attachment to control the progression of the cell cycle. The fourth module discerns correct from improper attachments, preventing the stabilization of the latter and allowing the selective stabilization of the former. In this review, we discuss how the molecular organization of the four modules allows a dynamic integration of kinetochore–microtubule attachment with the prevention of chromosome segregation errors and cell-cycle progression
Preliminary report of a gas conditioner to improve operational reliability of cryotherapy in developing countries
BACKGROUND: Cryotherapy is a safe, affordable, and effective method of treatment for cervical intraepithelial neoplasia. In some low-resource settings, environmental conditions or qualities of the refrigerant gas can lead to blockage of cryotherapy equipment, terminating treatment. A prototype of a gas conditioner to prevent operational failure was designed, built, and field tested. METHODS: The prototype conditioner device consists of an expansion chamber that filters and dries the refrigerant gas. Users in Peru and Kenya reported on their experience with the prototype conditioner. In Ghana, simulated cryotherapy procedures were used to test the effects of the prototype conditioner, as well as the commonly used "cough technique." RESULTS: Anecdotal reports from field use of the device were favorable. During simulated cryotherapy, the prevalence of blockage during freezing were 0% (0/25) with the device alone, 23.3% (7/30) with the cough technique alone, 5.9% (1/17) with both, and 55.2% (16/29) with neither (Pearson's Chi square = 26.6, df = 3, p < 0.001 (comparison amongst all groups)). CONCLUSION: This prototype design of a cryotherapy gas conditioner is a potential solution for low-resource settings that are experiencing cryotherapy device malfunction
Automatic correction of hand pointing in stereoscopic depth
In order to examine whether stereoscopic depth information could drive fast automatic correction of hand pointing, an experiment was designed in a 3D visual environment in which participants were asked to point to a target at different stereoscopic depths as quickly and accurately as possible within a limited time window (≤300 ms). The experiment consisted of two tasks: "depthGO" in which participants were asked to point to the new target position if the target jumped, and "depthSTOP" in which participants were instructed to abort their ongoing movements after the target jumped. The depth jump was designed to occur in 20% of the trials in both tasks. Results showed that fast automatic correction of hand movements could be driven by stereoscopic depth to occur in as early as 190 ms.This work was supported by the Grants from the National Natural Science Foundation of China (60970062 and 61173116) and the Doctoral Fund of Ministry of Education of China (20110072110014)
The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs
The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However, such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa. We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of the turkey's zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an intervertebral joint of a turkey raises neutral posture by 15°. If this were also true of sauropods, the true neutral pose of the neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11% more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary, including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than previously recognised
Task-Related Effects on the Temporal and Spatial Dynamics of Resting-State Functional Connectivity in the Default Network
Recent evidence points to two potentially fundamental aspects of the default network (DN), which have been relatively understudied. One is the temporal nature of the functional interactions among nodes of the network in the resting-state, usually assumed to be static. The second is possible influences of previous brain states on the spatial patterns (i.e., the brain regions involved) of functional connectivity (FC) in the DN at rest. The goal of the current study was to investigate modulations in both the spatial and temporal domains. We compared the resting-state FC of the DN in two runs that were separated by a 45 minute interval containing cognitive task execution. We used partial least squares (PLS), which allowed us to identify FC spatiotemporal patterns in the two runs and to determine differences between them. Our results revealed two primary modes of FC, assessed using a posterior cingulate seed – a robust correlation among DN regions that is stable both spatially and temporally, and a second pattern that is reduced in spatial extent and more variable temporally after cognitive tasks, showing switching between connectivity with certain DN regions and connectivity with other areas, including some task-related regions. Therefore, the DN seems to exhibit two simultaneous FC dynamics at rest. The first is spatially invariant and insensitive to previous brain states, suggesting that the DN maintains some temporally stable functional connections. The second dynamic is more variable and is seen more strongly when the resting-state follows a period of task execution, suggesting an after-effect of the cognitive activity engaged during task that carries over into resting-state periods
Prime movers : mechanochemistry of mitotic kinesins
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses
Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response
- …