6 research outputs found

    Alterations in vasomotor control of coronary resistance vessels in remodelled myocardium of swine with a recent myocardial infarction

    Get PDF
    The mechanism underlying the progressive deterioration of left ventricular (LV) dysfunction after myocardial infarction (MI) towards overt heart failure remains incompletely understood, but may involve impairments in coronary blood flow regulation within remodelled myocardium leading to intermittent myocardial ischemia. Blood flow to the remodelled myocardium is hampered as the coronary vasculature does not grow commensurate with the increase in LV mass and because extravascular compression of the coronary vasculature is increased. In addition to these factors, an increase in coronary vasomotor tone, secondary to neurohumoral activation and endothelial dysfunction, could also contribute to the impaired myocardial oxygen supply. Consequently, we explored, in a series of studies, the alterations in regulation of coronary resistance vessel tone in remodelled myocardium of swine with a 2 to 3-week-old MI. These studies indicate that myocardial oxygen balance is perturbed in remodelled myocardium, thereby forcing the myocardium to increase its oxygen extraction. These perturbations do not appear to be the result of blunted ÎČ-adrenergic or endothelial NO-mediated coronary vasodilator influences, and are opposed by an increased vasodilator influence through opening of KATP channels. Unexpectedly, we observed that despite increased circulating levels of noradrenaline, angiotensin II and endothelin-1, α-adrenergic tone remained negligible, while the coronary vasoconstrictor influences of endogenous endothelin and angiotensin II were virtually abolished. We conclude that, early after MI, perturbations in myocardial oxygen balance are observed in remodelled myocardium. However, adaptive alterations in coronary resistance vessel control, consisting of increased vasodilator influences in conjunction with blunted vasoconstrictor influences, act to minimize the impairments of myocardial oxygen balance

    High-energy phosphates and their catabolites

    No full text

    Invasive alien Crustacea: dispersal, establishment, impact and control

    No full text
    The subphylum Crustacea includes the most successful species among aquatic alien invaders. The impacts of invasive alien crustaceans (IAC) are often substantial, due to the complex trophic role of most of these species leading to cascading effects throughout the invaded ecosystems. IAC also have the potential to cause a shift in the ‘keystone’ ecosystem functions, changing energy flux and nutrient cycles which together affect critical ecosystem services such as biodiversity, fisheries yield and water quality. Although no individual trait appears to be a good predictor of invasion success, a combination of some characteristics such as eurytolerance, omnivory and certain r -selected life-history traits results in a high probability of alien crustacean species becoming invasive. Both environmental factors, such as habitat heterogeneity in the invaded ecosystems, and evolutionary factors, such as adaptations to new environmental conditions, also play important roles during establishment. Therefore, individual environmental niche models, including genetic algorithm, have the highest likelihood of providing useful predictive information about invasion success and spread of alien Crustacea. Attempts to control IAC through biocides or mechanical removal have had mixed success in the past but a strategic combination of different methods may lead to some success in the future

    Skeletal Muscle Circulation

    No full text
    corecore