27 research outputs found

    TrpC3 Regulates Hypertrophy-Associated Gene Expression without Affecting Myocyte Beating or Cell Size

    Get PDF
    Pathological cardiac hypertrophy is associated with an increased risk of heart failure and cardiovascular mortality. Calcium (Ca2+) -regulated gene expression is essential for the induction of hypertrophy, but it is not known how myocytes distinguish between the Ca2+ signals that regulate contraction and those that lead to cardiac hypertrophy. We used in vitro neonatal rat ventricular myocytes to perform an RNA interference (RNAi) screen for ion channels that mediate Ca2+-dependent gene expression in response to hypertrophic stimuli. We identified several ion channels that are linked to hypertrophic gene expression, including transient receptor potential C3 (TrpC3). RNAi-mediated knockdown of TrpC3 decreases expression of hypertrophy-associated genes such as the A- and B-type natriuretic peptides (ANP and BNP) in response to numerous hypertrophic stimuli, while TrpC3 overexpression increases BNP expression. Furthermore, stimuli that induce hypertrophy dramatically increase TrpC3 mRNA levels. Importantly, whereas TrpC3-knockdown strongly reduces gene expression associated with hypertrophy, it has a negligible effect on cell size and on myocyte beating. These results suggest that Ca2+ influx through TrpC3 channels increases transcription of genes associated with hypertrophy but does not regulate the signaling pathways that control cell size or contraction. Thus TrpC3 may represent an important therapeutic target for the treatment of cardiac hypertrophy and heart failure

    Sws1 is a conserved regulator of homologous recombination in eukaryotic cells

    No full text
    Rad52-dependent homologous recombination (HR) is regulated by the antirecombinase activities of Srs2 and Rqh1/Sgs1 DNA helicases in fission yeast and budding yeast. Functional analysis of Srs2 in Schizosaccharomyces pombe led us to the discovery of Sws1, a novel HR protein with a SWIM-type Zn finger. Inactivation of Sws1 suppresses the genotoxic sensitivity of srs2Δ and rqh1Δ mutants and rescues the inviability of srs2Δ rqh1Δ cells. Sws1 functions at an early step of recombination in a pro-recombinogenic complex with Rlp1 and Rdl1, two RecA-like proteins that are most closely related to the human Rad51 paralogs XRCC2 and RAD51D, respectively. This finding indicates that the XRCC2–RAD51D complex is conserved in lower eukaryotes. A SWS1 homolog exists in human cells. It associates with RAD51D and ablating its expression reduces the number of RAD51 foci. These studies unveil a conserved pathway for the initiation and control of HR in eukaryotic cells

    Thymopoiesis in elderly human is associated with systemic inflammatory status

    No full text
    Immunosenescence studies of age-related immune system damage focused on clinical lymphopenic situations or androgenic blockade have revealed new insights about adult human immune reconstitution. However, as far as we know, the extent of lymphopoiesis in the thymus of elderly humans remains unclear. To this effect, we have analyzed 65 adult human thymuses (from 36 to 81 years; median age 68.6 years) obtained from patients who underwent cardiac surgery. Our results show a correlation between CD4+CD8+ double-positive (DP) cells and both the age (inverse) and percentage (direct) of peripheral naive T cells, indicating that the thymus is still able to affect the peripheral lymphocyte pool even in the elderly. We also found significant correlation between the degree of thymopoiesis and the inflammation markers, as shown by the inverse correlations between DP and the percentage of neutrophils and IL-6 levels and the percentage of peripheral lymphocytes. Furthermore, in a multivariate linear regression the percentage of DP and IL-7 levels, but not age, were independently associated with the percentage of neutrophils. In conclusion, the thymus maintains, even in the elderly, an active thymopoiesis that rejuvenates the peripheral naive T-cell pool. Moreover, age-related thymopoietic decay is associated with the peripheral inflammation markers
    corecore