35 research outputs found

    Lobe-Specific Calcium Binding in Calmodulin Regulates Endothelial Nitric Oxide Synthase Activation

    Get PDF
    BACKGROUND: Human endothelial nitric oxide synthase (eNOS) requires calcium-bound calmodulin (CaM) for electron transfer but the detailed mechanism remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Using a series of CaM mutants with E to Q substitution at the four calcium-binding sites, we found that single mutation at any calcium-binding site (B1Q, B2Q, B3Q and B4Q) resulted in ∌2-3 fold increase in the CaM concentration necessary for half-maximal activation (EC50) of citrulline formation, indicating that each calcium-binding site of CaM contributed to the association between CaM and eNOS. Citrulline formation and cytochrome c reduction assays revealed that in comparison with nNOS or iNOS, eNOS was less stringent in the requirement of calcium binding to each of four calcium-binding sites. However, lobe-specific disruption with double mutations in calcium-binding sites either at N- (B12Q) or at C-terminal (B34Q) lobes greatly diminished both eNOS oxygenase and reductase activities. Gel mobility shift assay and flavin fluorescence measurement indicated that N- and C-lobes of CaM played distinct roles in regulating eNOS catalysis; the C-terminal EF-hands in its calcium-bound form was responsible for the binding of canonical CaM-binding domain, while N-terminal EF-hands in its calcium-bound form controlled the movement of FMN domain. Limited proteolysis studies further demonstrated that B12Q and B34Q induced different conformational change in eNOS. CONCLUSIONS: Our results clearly demonstrate that CaM controls eNOS electron transfer primarily through its lobe-specific calcium binding

    Long-Term Vegetation Change in Central Africa: The Need for an Integrated Management Framework for Forests and Savannas

    Full text link
    peer reviewedTropical forests and savannas are the main biomes in sub-Saharan Africa, covering most of the continent. Collectively they offer important habitat for biodiversity and provide multiple ecosystem services. Considering their global importance and the multiple sustainability challenges they face in the era of the Anthropocene, this chapter undertakes a comprehensive analysis of the past, present, and future vegetation patterns in central African forests and savannas. Past changes in climate, vegetation, land use, and human activity have affected the distribution of forests and savannas across central Africa. Currently, forests form a continuous block across the wet and moist areas of central Africa, and are characterized by high tree cover (>90% tree cover). Savannas and woodlands have lower tree cover (<40% tree cover), are found in drier sites in the north and south of the region, and are maintained by frequent fires. Recent tree cover loss (2000–2015) has been more important for forests than for savannas, which, however, reportedly experienced woody encroachment. Future cropland expansion is expected to have a strong impact on savannas, while the extent of climatic impacts depends on the actual scenario. We finally identify some of the policy implications for restoring ecosystems, expanding protected areas, and designing sustainable ecosystem management approaches in the region

    Evolution and Structural Organization of the C Proteins of Paramyxovirinae

    No full text
    corecore