12 research outputs found

    Optimal mean airway pressure during high-frequency oscillatory ventilation determined by measurement of respiratory system reactance.

    No full text
    The aims of the present study were (i) to characterize the relationship between mean airway pressure (PAW) and reactance measured at 5 Hz (reactance of the respiratory system (X RS), forced oscillation technique) and (ii) to compare optimal PAW (P opt) defined by X RS, oxygenation, lung volume (VL), and tidal volume (VT) in preterm lambs receiving high-frequency oscillatory ventilation (HFOV).Nine 132-d gestation lambs were commenced on HFOV at PAW of 14 cmH2O (P start). PAW was increased stepwise to a maximum pressure (P max) and subsequently sequentially decreased to the closing pressure (Pcl, oxygenation deteriorated) or a minimum of 6 cmH2O, using an oxygenation-based recruitment maneuver. X RS, regional V L (electrical impedance tomography), and V T were measured immediately after (t 0 min) and 2 min after (t 2 min) each PAW decrement. P opt defined by oxygenation, X RS, V L, and V T were determined.The PAW-X RS and PAW-VT relationships were dome shaped with a maximum at Pcl+6 cmH2O, the same point as P opt defined by VL. Below Pcl+6 cmH2O, X RS became unstable between t 0 min and t 2 min and was associated with derecruitment in the dependent lung. P opt, as defined by oxygenation, was lower than the P opt defined by X RS, V L, or V T.X RS has the potential as a bedside tool for optimizing PAW during HFOV
    corecore