140 research outputs found
Recommended from our members
Economics and politics of shale gas in Europe
In the wake of the dramatic growth in shale gas production in the United States, interest in shale gas exploration in Europe has been driven primarily by concerns over industrial competitiveness and energy security. A number of studies have been carried out to understand the success factors underpinning the US shale gas revolution and how this success could be replicated in Europe. Most of these studies focus on the macroeconomic and energy market impact of a possible shale gas production in Europe. These studies are in general sceptical about the prospects of shale gas development relative to other gas supply options to Europe. By considering the other options available in greater detail and exploring the stochastic nature of shale gas exploration and production as they apply to production economics, we conclude that this scepticism may be overstated. Apart from political opposition that has shut down shale gas exploration in a number of European member states because of concerns over environmental risks, in some countries notably the UK, the combination of political support and a large, liberalised gas market may offer at least a plausible case for shale gas production. To properly assess the potential for shale gas though, a more rigorous, probabilistic analysis of the associated production economics will need to be carried out
Seasonal changes in patterns of gene expression in avian song control brain regions.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity
Plasticity in D1-Like Receptor Expression Is Associated with Different Components of Cognitive Processes
Dopamine D1-like receptors consist of D1 (D1A) and D5 (D1B) receptors and play a key role in working memory. However, their possibly differential contribution to working memory is unclear. We combined a working memory training protocol with a stepwise increase of cognitive subcomponents and real-time RT-PCR analysis of dopamine receptor expression in pigeons to identify molecular changes that accompany training of isolated cognitive subfunctions. In birds, the D1-like receptor family is extended and consists of the D1A, D1B, and D1D receptors. Our data show that D1B receptor plasticity follows a training that includes active mental maintenance of information, whereas D1A and D1D receptor plasticity in addition accompanies learning of stimulus-response associations. Plasticity of D1-like receptors plays no role for processes like response selection and stimulus discrimination. None of the tasks altered D2 receptor expression. Our study shows that different cognitive components of working memory training have distinguishable effects on D1-like receptor expression
A Randomized, Double Blind, Placebo-Controlled Trial of Pioglitazone in Combination with Riluzole in Amyotrophic Lateral Sclerosis
BACKGROUND: Pioglitazone, an oral anti-diabetic that stimulates the PPAR-gamma transcription factor, increased survival of mice with amyotrophic lateral sclerosis (ALS).
METHODS/PRINCIPAL FINDINGS: We performed a phase II, double blind, multicentre, placebo controlled trial of pioglitazone in ALS patients under riluzole. 219 patients were randomly assigned to receive 45 mg/day of pioglitazone or placebo (one: one allocation ratio). The primary endpoint was survival. Secondary endpoints included incidence of non-invasive ventilation and tracheotomy, and slopes of ALS-FRS, slow vital capacity, and quality of life as assessed using EUROQoL EQ-5D. The study was conducted under a two-stage group sequential test, allowing to stop for futility or superiority after interim analysis. Shortly after interim analysis, 30 patients under pioglitazone and 24 patients under placebo had died. The trial was stopped for futility; the hazard ratio for primary endpoint was 1.21 (95% CI: 0.71-2.07, p = 0.48). Secondary endpoints were not modified by pioglitazone treatment. Pioglitazone was well tolerated.
CONCLUSION/SIGNIFICANCE: Pioglitazone has no beneficial effects on the survival of ALS patients as add-on therapy to riluzole.
TRIAL REGISTRATION: Clinicaltrials.gov NCT00690118
GAMETOPHYTE DEFECTIVE 1, a Putative Subunit of RNases P/MRP, Is Essential for Female Gametogenesis and Male Competence in Arabidopsis
RNA biogenesis, including biosynthesis and maturation of rRNA, tRNA and mRNA, is a fundamental process that is critical for cell growth, division and differentiation. Previous studies showed that mutations in components involved in RNA biogenesis resulted in abnormalities in gametophyte and leaf development in Arabidopsis. In eukaryotes, RNases P/MRP (RNase mitochondrial RNA processing) are important ribonucleases that are responsible for processing of tRNA, and transcription of small non-coding RNAs. Here we report that Gametophyte Defective 1 (GAF1), a gene encoding a predicted protein subunit of RNases P/MRP, AtRPP30, plays a role in female gametophyte development and male competence. Embryo sacs were arrested at stages ranging from FG1 to FG7 in gaf1 mutant, suggesting that the progression of the gametophytic division during female gametogenesis was impaired in gaf1 mutant. In contrast, pollen development was not affected in gaf1. However, the fitness of the mutant pollen tube was weaker than that of the wild-type, leading to reduced transmission through the male gametes. GAF1 is featured as a typical RPP30 domain protein and interacts physically with AtPOP5, a homologue of RNases P/MRP subunit POP5 of yeast. Together, our data suggest that components of the RNases P/MRP family, such as RPP30, play important roles in gametophyte development and function in plants
Genome-wide association trans-ethnic meta-analyses identifies novel associations regulating coagulation Factor VIII and von Willebrand Factor plasma levels
BACKGROUND: Factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are associated with risk of arterial and venous thrombosis and with hemorrhagic disorders. We aimed to identify and functionally test novel genetic associations regulating plasma FVIII and VWF. METHODS: We meta-analyzed genome-wide association results from 46 354 individuals of European, African, East Asian, and Hispanic ancestry. All studies performed linear regression analysis using an additive genetic model and associated ≈35 million imputed variants with natural log-transformed phenotype levels. In vitro gene silencing in cultured endothelial cells was performed for candidate genes to provide additional evidence on association and function. Two-sample Mendelian randomization analyses were applied to test the causal role of FVIII and VWF plasma levels on the risk of arterial and venous thrombotic events. RESULTS: We identified 13 novel genome-wide significant ( P≤2.5×10-8) associations, 7 with FVIII levels ( FCHO2/TMEM171/TNPO1, HLA, SOX17/RP1, LINC00583/NFIB, RAB5C-KAT2A, RPL3/TAB1/SYNGR1, and ARSA) and 11 with VWF levels ( PDHB/PXK/KCTD6, SLC39A8, FCHO2/TMEM171/TNPO1, HLA, GIMAP7/GIMAP4, OR13C5/NIPSNAP, DAB2IP, C2CD4B, RAB5C-KAT2A, TAB1/SYNGR1, and ARSA), beyond 10 previously reported associations with these phenotypes. Functional validation provided further evidence of association for all loci on VWF except ARSA and DAB2IP. Mendelian randomization suggested causal effects of plasma FVIII activity levels on venous thrombosis and coronary artery disease risk and plasma VWF levels on ischemic stroke risk. CONCLUSIONS: The meta-analysis identified 13 novel genetic loci regulating FVIII and VWF plasma levels, 10 of which we validated functionally. We provide some evidence for a causal role of these proteins in thrombotic events
A Meta-Analysis and Genome-Wide Association Study of Platelet Count and Mean Platelet Volume in African Americans
Several genetic variants associated with platelet count and mean platelet volume
(MPV) were recently reported in people of European ancestry. In this
meta-analysis of 7 genome-wide association studies (GWAS) enrolling African
Americans, our aim was to identify novel genetic variants associated with
platelet count and MPV. For all cohorts, GWAS analysis was performed using
additive models after adjusting for age, sex, and population stratification. For
both platelet phenotypes, meta-analyses were conducted using inverse-variance
weighted fixed-effect models. Platelet aggregation assays in whole blood were
performed in the participants of the GeneSTAR cohort. Genetic variants in ten
independent regions were associated with platelet count
(N = 16,388) with p<5×10−8 of
which 5 have not been associated with platelet count in previous GWAS. The novel
genetic variants associated with platelet count were in the following regions
(the most significant SNP, closest gene, and p-value): 6p22 (rs12526480,
LRRC16A, p = 9.1×10−9), 7q11
(rs13236689, CD36, p = 2.8×10−9),
10q21 (rs7896518, JMJD1C,
p = 2.3×10−12), 11q13 (rs477895,
BAD, p = 4.9×10−8), and 20q13
(rs151361, SLMO2, p = 9.4×10−9).
Three of these loci (10q21, 11q13, and 20q13) were replicated in European
Americans (N = 14,909) and one (11q13) in Hispanic
Americans (N = 3,462). For MPV
(N = 4,531), genetic variants in 3 regions were significant
at p<5×10−8, two of which were also associated with
platelet count. Previously reported regions that were also significant in this
study were 6p21, 6q23, 7q22, 12q24, and 19p13 for platelet count and 7q22,
17q11, and 19p13 for MPV. The most significant SNP in 1 region was also
associated with ADP-induced maximal platelet aggregation in whole blood (12q24).
Thus through a meta-analysis of GWAS enrolling African Americans, we have
identified 5 novel regions associated with platelet count of which 3 were
replicated in other ethnic groups. In addition, we also found one region
associated with platelet aggregation that may play a potential role in
atherothrombosis
Neurodegenerative processes in Huntington's disease
Huntington's disease (HD) is a complex and severe disorder characterized by the gradual and the progressive loss of neurons, predominantly in the striatum, which leads to the typical motor and cognitive impairments associated with this pathology. HD is caused by a highly polymorphic CAG trinucleotide repeat expansion in the exon-1 of the gene encoding for huntingtin protein. Since the first discovery of the huntingtin gene, investigations with a consistent number of in-vitro and in-vivo models have provided insights into the toxic events related to the expression of the mutant protein. In this review, we will summarize the progress made in characterizing the signaling pathways that contribute to neuronal degeneration in HD. We will highlight the age-dependent loss of proteostasis that is primarily responsible for the formation of aggregates observed in HD patients. The most promising molecular targets for the development of pharmacological interventions will also be discussed
What scans we will read: imaging instrumentation trends in clinical oncology
Oncological diseases account for a significant portion of the burden on public healthcare systems with associated
costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific
morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non-
invasively, so as to provide referring oncologists with essential information to support therapy management
decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards
integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/
CT), advanced MRI, optical or ultrasound imaging.
This perspective paper highlights a number of key technological and methodological advances in imaging
instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as
the hardware-based combination of complementary anatomical and molecular imaging. These include novel
detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system
developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing
methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging
in oncology patient management we introduce imaging methods with well-defined clinical applications and
potential for clinical translation. For each modality, we report first on the status quo and point to perceived
technological and methodological advances in a subsequent status go section. Considering the breadth and
dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the
majority of them being imaging experts with a background in physics and engineering, believe imaging methods
will be in a few years from now.
Overall, methodological and technological medical imaging advances are geared towards increased image contrast,
the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall
examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is
complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To
this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis,
including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor
phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi-
dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and
analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts
with a domain knowledge that will need to go beyond that of plain imaging
- …