281 research outputs found

    Evaluation of the rapid diagnostic test SDFK40 (Pf-pLDH/pan-pLDH) for the diagnosis of malaria in a non-endemic setting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study evaluated the SD Bioline Malaria Ag 05FK40 (SDFK40), a three-band RDT detecting <it>Plasmodium falciparum</it>-specific parasite lactate dehydrogenase (Pf-pLDH) and pan <it>Plasmodium</it>-specific pLDH (pan-pLDH), in a reference setting.</p> <p>Methods</p> <p>The SDFK40 was retrospectively and prospectively tested against a panel of stored (n = 341) and fresh (n = 181) whole blood samples obtained in international travelers suspected of malaria, representing the four <it>Plasmodium </it>species as well as <it>Plasmodium </it>negative samples, and compared to microscopy and PCR results. The prospective panel was run together with OptiMAL (Pf-pLDH/pan-pLDH) and SDFK60 (histidine-rich protein-2 (HRP-2)/pan-pLDH).</p> <p>Results</p> <p>Overall sensitivities for <it>P. falciparum </it>tested retrospectively and prospectively were 67.9% and 78.8%, reaching 100% and 94.6% at parasite densities >1,000/μl. Sensitivity at parasite densities ≤ 100/μl was 9.1%. Overall sensitivities for <it>Plasmodium vivax </it>and <it>Plasmodium ovale </it>were 86.7% and 80.0% (retrospectively) and 92.9% and 76.9% (prospectively), reaching 94.7% for both species (retrospective panel) at parasite densities >500/μl. Sensitivity for <it>Plasmodium malariae </it>was 21.4%. Species mismatch occurred in 0.7% of samples (3/411) and was limited to non-<it>falciparum </it>species erroneously identified as <it>P. falciparum</it>. None of the <it>Plasmodium </it>negative samples in the retrospective panel reacted positive. Compared to OptiMAL and SDFK60, SDFK40 showed lower sensitivities for <it>P. falciparum</it>, but better detection of <it>P. ovale</it>. Inter-observer agreement and test reproducibility were excellent, but lot-to-lot variability was observed for pan-pLDH results in case of <it>P. falciparum</it>.</p> <p>Conclusion</p> <p>SDFK40 performance was poor at low (≤ 100/μl) parasite densities, precluding its use as the only diagnostic tool for malaria diagnosis. SDFK40 performed excellent for <it>P. falciparum </it>samples at high (>1,000/μl) parasite densities as well as for detection of <it>P. vivax </it>and <it>P. ovale </it>at parasite densities >500/μl.</p

    Differential gene expression mediated by 15-hydroxyeicosatetraenoic acid in LPS-stimulated RAW 264.7 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Given the immuno-modulatory activity of native haemozoin (Hz), the effects of constitutive Hz components on immune response are of interest. Recently, gene expression changes mediated by HNE and the synthetic analogue of Hz, beta-haematin (BH), were identified and implicated a significant role for lipid peroxidation products in Hz's activity. The study presented herein examines gene expression changes in response to 15(S)-hydroxyeicosatetraenoic acid (HETE) in a model macrophage cell line.</p> <p>Methods</p> <p>LPS-stimulated RAW 264.7 macrophage-like cells were treated with 40 μM 15(S)-HETE for 24 h, and microarray analysis was used to identify global gene expression alterations. Fold changes were calculated relative to LPS-stimulated cells and those genes altered at least 1.8-fold (<it>p </it>value ≤ 0.025) were considered to be differentially expressed. Expression levels of a subset of genes were assessed by qRT-PCR and used to confirm the microarray results.</p> <p>Results</p> <p>Network analysis revealed that altered genes were primarily associated with "lipid metabolism" and "small molecule biochemistry". While several genes associated with PPAR-gamma receptor-mediated signaling were differentially expressed, a number of genes indicated the activation of secondary signaling cascades. Genes related to cytoadherence (cell-cell and cell-matrix), leukocyte extravasation, and inflammatory response were also differentially regulated by treatment, supporting a potential role for 15(S)-HETE in malaria pathogenesis.</p> <p>Conclusion</p> <p>These results add insight and detail to 15-HETE's effects on gene expression in macrophage-like cells. Data indicate that while 15-HETE exerts biological activity and may participate in Hz-mediated immuno-modulation, the gene expression changes are modest relative to those altered by the lipid peroxidation product HNE.</p

    The 5-HTTLPR polymorphism of the serotonin transporter gene and short term behavioral response to methylphenidate in children with ADHD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Animal models of ADHD suggest that the paradoxical calming effect of methylphenidate on motor activity could be mediated through its action on serotonin transmission. In this study, we have investigated the relationship between the 5-HTTLPR polymorphism in the serotonin transporter gene (<it>SLC6A4</it>) and the response of ADHD relevant behaviors with methylphenidate treatment.</p> <p>Methods</p> <p>Patients between ages 6-12 (n = 157) were assessed with regard to their behavioral response to methylphenidate (0.5 mg/kg/day) using a 2-week prospective within-subject, placebo-controlled (crossover) trial. The children were then genotyped with regard to the triallelic 5-HTTLPR polymorphism in the <it>SLC6A4 </it>gene. Main outcome measure: Conners' Global Index for parents (CGI-Parents) and teachers (CGI-Teachers) at baseline and at the end of each week of treatment with placebo and methylphenidate. For both outcome measurements, we used a mixed model analysis of variance to determine gene, treatment and gene × treatment interaction effects.</p> <p>Results</p> <p>Mixed model analysis of variance revealed a gene × treatment interaction for CGI-Parents but not for CGI-Teachers. Children homozygous for the lower expressing alleles (<it>s+l<sub>G </sub>= s'</it>) responded well to placebo and did not derive additional improvement with methylphenidate compared to children carrying a higher expressing allele (<it>l<sub>A</sub></it>). No genotype main effects on either CGI-Parents or CGI-teachers were observed.</p> <p>Conclusions</p> <p>A double blind placebo-controlled design was used to assess the behavioral effects of methylphenidate in relation to the triallelic 5-HTTLPR polymorphism of the <it>SLC6A4 </it>gene in children with ADHD. This polymorphism appears to modulate the behavioral response to methylphenidate in children with ADHD as assessed in the home environment by parents. Further investigation is needed to assess the clinical implications of this finding.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00483106</p

    Changes in magnetic resonance mammography due to hormone replacement therapy

    Get PDF
    BACKGROUND: The aim of the present article is to investigate effects of hormone replacement therapy (HRT) on contrast medium enhancement patterns in postmenopausal patients during magnetic resonance mammography (MRM). MATERIALS AND METHODS: Two hundred and fifteen patients receiving hormonal medication were divided into four groups: 150 patients with 1 MRM during HRT (group A), 13 patients with 2 MRMs under HRT (group B), 30 patients with 1 MRM during HRT and 1 MRM after HRT withdrawal (group C), and 22 women with 1 MRM after HRT withdrawal (group D). Dynamic MRM was performed at 1.5 Tesla. Signal intensity changes were characterized by five time curves: minimal enhancement (type I), weak continuous enhancement (type II), strong continuous enhancement (type III), and a steep initial slope followed by a plateau phenomenon (type IV) or a washout effect (type V). RESULTS: Of all 193 patients under HRT (group A + group B + group C), 60 patients (31.1%) showed curve type I, 88 patients (45.6%) showed type II and 45 patients (23.3%) showed type III. There were significant differences to 52 patients after HRT withdrawal (group C + group D) (P < 0.0001), with 42 patients (80.8%) for curve type I, 8 patients (15.4%) for type II, and 2 patients (3.8%) for type III. In both MRM sessions in group B, 69% of the patients showed identical curve types without significant differences (P = 0.375). In group C, 28 of 30 patients (93%) dropped to lower curve types with significant differences in curve types during and after HRT (P < 0.0001). CONCLUSION: The majority of patients receiving postmenopausal HRT showed bilateral symmetrical, continuous enhancement without evidence of a plateau phenomenon or a washout effect due to HRT in MRM. Hormonal effects could be proven and were reproducible and reversible

    Lack of PPARγ in Myeloid Cells Confers Resistance to Listeria monocytogenes Infection

    Get PDF
    The peroxisomal proliferator-activated receptor γ (PPARγ) is a nuclear receptor that controls inflammation and immunity. Innate immune defense against bacterial infection appears to be compromised by PPARγ. The relevance of PPARγ in myeloid cells, that organize anti-bacterial immunity, for the outcome of immune responses against intracellular bacteria such as Listeria monocytogenes in vivo is unknown. We found that Listeria monocytogenes infection of macrophages rapidly led to increased expression of PPARγ. This prompted us to investigate whether PPARγ in myeloid cells influences innate immunity against Listeria monocytogenes infection by using transgenic mice with myeloid-cell specific ablation of PPARγ (LysMCre×PPARγflox/flox). Loss of PPARγ in myeloid cells results in enhanced innate immune defense against Listeria monocytogenes infection both, in vitro and in vivo. This increased resistance against infection was characterized by augmented levels of bactericidal factors and inflammatory cytokines: ROS, NO, IFNγ TNF IL-6 and IL-12. Moreover, myeloid cell-specific loss of PPARγ enhanced chemokine and adhesion molecule expression leading to improved recruitment of inflammatory Ly6Chi monocytes to sites of infection. Importantly, increased resistance against Listeria infection in the absence of PPARγ was not accompanied by enhanced immunopathology. Our results elucidate a yet unknown regulatory network in myeloid cells that is governed by PPARγ and restrains both listeriocidal activity and recruitment of inflammatory monocytes during Listeria infection, which may contribute to bacterial immune escape. Pharmacological interference with PPARγ activity in myeloid cells might represent a novel strategy to overcome intracellular bacterial infection

    External quality assessment on the use of malaria rapid diagnostic tests in a non-endemic setting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria rapid diagnostic tests (RDTs) are increasingly used as a tool for the diagnosis of malaria, both in endemic and in non-endemic settings. The present study reports the results of an external quality assessment (EQA) session on RDTs in a non-endemic setting.</p> <p>Methods</p> <p>After validation of antigen stability during shipment at room temperature, three clinical samples and a questionnaire were sent to clinical laboratories in Belgium and the Grand Duchy of Luxembourg using malaria RDTs. Participants were asked to report the results of the RDTs as observations (visibility of the RDT control and test lines) and interpretations (report as formulated to the clinician). In addition, participants were invited to fill in a questionnaire on the place of RDTs in the diagnostic strategy of malaria.</p> <p>Results</p> <p>A total of 128/133 (96.2%) of clinical laboratories using RDTs participated. Six three-band and one four-band RDT brands were used. Analytical errors were rare and included (i) not recognizing invalid RDT results (1.6%) and (ii) missing the diagnosis of <it>Plasmodium falciparum </it>(0.8%). Minor errors were related to RDT test result interpretation and included (i) reporting "RDT positive" without species identification in the case of <it>P. falciparum </it>and non-<it>falciparum </it>species (16.9% and 6.5% respectively) and (ii) adding incorrect comments to the report (3.2%). Some of these errors were related to incorrect RDT package insert instructions such as (i) not reporting the possibility of mixed species infection in the case of <it>P. falciparum </it>and <it>Plasmodium vivax </it>(35.5% and 18.5% respectively) and (ii) the interpretation of <it>P. vivax </it>instead of non-falciparum species at the presence of a pan-species antigen line (4.0%). According to the questionnaire, 48.8% of participants processed ≤20 requests for malaria diagnosis in 2009. During opening hours, 93.6% of 125 participants used RDTs as an adjunct to microscopy but outside opening hours, nearly one third of 113 participants relied on RDTs as the primary (4.4%) or the single tool (25.7%) for malaria diagnosis.</p> <p>Conclusion</p> <p>In this non-endemic setting, errors in RDT performance were mainly related to RDT test line interpretations, partly due to incorrect package insert instructions. The reliance on RDTs as the primary or the single tool for the diagnosis of malaria outside opening hours is of concern and should be avoided.</p

    Working without a blindfold: the critical role of diagnostics in malaria control

    Get PDF
    Diagnostic testing for malaria has for many years been eschewed, lest it be an obstacle to the delivery of rapid, life-saving treatment. The approach of treating malaria without confirmatory testing has been reinforced by the availability of inexpensive treatment with few side effects, by the great difficulty of establishing quality-assured microscopy in rural and resource-poor settings, and by the preeminence of malaria as a cause of important fever in endemic regions. Within the last decade, all three of these factors have changed. More expensive artemisinin combination therapy (ACT) has been widely introduced, simple immunochromatographic tests for malaria have been developed that can be used as an alternative to microscopy by village health workers, and recognition of the health cost of mismanaging non-malarial fever is growing. In most of the world a small fraction of fever is due to malaria, and reflex treatment with ACT does not make medical or economic sense. Global malaria control efforts have been energized by the availability of new sources of funding, and by the rapid reduction in malaria prevalence in a number of settings where bed nets, indoor residual spraying with insecticides, and ACT have been systematically deployed. This momentum has been captured by a new call for malaria elimination. Without wide implementation of accurate and discriminating diagnostic testing, and reporting of results, most fever will be inappropriately managed, millions of doses of ACT will be wasted, and malaria control programmes will be blindfolded to the impact of their efforts

    Assessment of the prozone effect in malaria rapid diagnostic tests

    Get PDF
    BACKGROUND: The prozone effect (or high doses-hook phenomenon) consists of false-negative or false-low results in immunological tests, due to an excess of either antigens or antibodies. Although frequently cited as a cause of false-negative results in malaria rapid diagnostic tests (RDTs), especially at high parasite densities of Plasmodium falciparum, it has been poorly documented. In this study, a panel of malaria RDTs was challenged with clinical samples with P. falciparum hyperparasitaemia (> 5% infected red blood cells). METHODS: Twenty-two RDT brands were tested with seven samples, both undiluted and upon 10 x, 50 x and 100 x dilutions in NaCl 0.9%. The P. falciparum targets included histidine-rich protein-2 (HRP-2, n = 17) and P. falciparum-specific parasite lactate dehydrogenase (Pf-pLDH, n = 5). Test lines intensities were recorded in the following categories: negative, faint, weak, medium or strong. The prozone effect was defined as an increase in test line intensity of at least one category after dilution, if observed upon duplicate testing and by two readers. RESULTS: Sixteen of the 17 HRP-2 based RDTs were affected by prozone: the prozone effect was observed in at least one RDT sample/brand combination for 16/17 HRP-2 based RDTs in 6/7 samples, but not for any of the Pf-pLDH tests. The HRP-2 line intensities of the undiluted sample/brand combinations with prozone effect (n = 51) included a single negative (1.9%) and 29 faint and weak readings (56.9%). The other target lens (P. vivax-pLDH, pan-specific pLDH and aldolase) did not show a prozone effect. CONCLUSION: This study confirms the prozone effect as a cause of false-negative HRP-2 RDTs in samples with hyperparasitaemia

    Prozone in malaria rapid diagnostics tests: how many cases are missed?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prozone means false-negative or false-low results in antigen-antibody reactions, due to an excess of either antigen or antibody. The present study prospectively assessed its frequency for malaria rapid diagnostic tests (RDTs) and <it>Plasmodium falciparum </it>samples in an endemic field setting.</p> <p>Methods</p> <p>From January to April 2010, blood samples with <it>P. falciparum </it>high parasitaemia (≥ 4% red blood cells infected) were obtained from patients presenting at the Provincial Hospital of Tete (Mozambique). Samples were tested undiluted and 10-fold diluted in saline with a panel of RDTs and results were scored for line intensity (no line visible, faint, weak, medium and strong). Prozone was defined as a sample which showed no visible test line or a faint or weak test line when tested undiluted, and a visible test line of higher intensity when tested 10-fold diluted, as observed by two blinded observers and upon duplicate testing.</p> <p>Results</p> <p>A total of 873/7,543 (11.6%) samples showed <it>P. falciparum</it>, 92 (10.5%) had high parasitaemia and 76 were available for prozone testing. None of the two Pf-pLDH RDTs, but all six HRP-2 RDTs showed prozone, at frequencies between 6.7% and 38.2%. Negative and faint HRP-2 lines accounted for four (3.8%) and 15 (14.4%) of the 104 prozone results in two RDT brands. For the most affected brand, the proportions of prozone with no visible or faint HRP-2 lines were 10.9% (CI: 5.34-19.08), 1.2% (CI: 0.55-2.10) and 0.1% (CI: 0.06-0.24) among samples with high parasitaemia, all positive samples and all submitted samples respectively. Prozone occurred mainly, but not exclusively, among young children.</p> <p>Conclusion</p> <p>Prozone occurs at different frequency and intensity in HRP-2 RDTs and may decrease diagnostic accuracy in the most affected RDTs.</p
    corecore