19 research outputs found

    Does capture method or the presence of aquatic protected areas influence the selective harvest of behavioural types in largemouth bass?

    Get PDF
    Selectively removing fish based on particular traits, such as body size, may shift trait abundance in the remaining population, resulting in a phenomenon called fisheries-induced evolution. Recently, there is growing interest in evaluating the effects of fisheries-induced evolution on fish behaviour. Aquatic protected areas (APAs) have been designated in some habitats in efforts to prohibit harvesting and maintain natural ranges of phenotypic variation for impacted species. Here, we attempted to test whether APAs that prohibit all forms of fishing have an evolutionary influence on adult largemouth bass (Micropterus salmoides) behaviour by investigating the relationship between capture method and behavioural type. Fish, caught via active (angling) and passive (hoop net) capture techniques in both protected (70+ year old APAs in eastern Ontario) and adjacent nonprotected areas, were subjected to standard tests of boldness (refuge emergence, general activity, and flight-initiationdistance). A behavioural syndrome characterized by consistent within-individual variation and correlation of boldness behaviours (activity and refuge emergence) was present. Our results provide evidence that APAs may promote behavioural diversification and protect traits selectively targeted by recreational angling

    Association Mapping Based on a Common-Garden Migration Experiment Reveals Candidate Genes for Migration Tendency in Brown Trout

    Get PDF
    A better understanding of the environmental and genetic contribution to migratory behavior and the evolution of traits linked to migration is crucial for fish conservation and fisheries management. Up to date, a few genes with unequivocal influence on the adoption of alternative migration strategies have been identified in salmonids. Here, we used a common garden set-up to measure individual migration distances of generally highly polymorphic brown trout Salmo trutta from two populations. Fish from the assumedly resident population showed clearly shorter migration distances than the fish from the assumed migratory population at the ages of 2 and 3 years. By using two alternative analytical pipelines with 22186 and 18264 SNPs obtained through RAD-sequencing, we searched for associations between individual migration distance, and both called genotypes and genotype probabilities. None of the SNPs showed statistically significant individual effects on migration after correction for multiple testing. By choosing a less stringent threshold, defined as an overlap of the top 0.1% SNPs identified by the analytical pipelines, GAPIT and Angsd, we identified eight candidate genes that are potentially linked to individual migration distance. While our results demonstrate large individual and population level differences in migration distances, the detected genetic associations were weak suggesting that migration traits likely have multigenic control

    Teaching Post-Secondary Students in Ecology and Evolution: Strategies for Early-Career Researchers

    Get PDF
    Teaching can be a rewarding, yet challenging, experience for early career researchers (ECRs) in fields like ecology and evolution. Much of this challenge arises from the reality that ECRs in ecology and evolution typically receive little, if any, pedagogical training or advice on how to balance teaching, research (which can include extended field work), and other demands on their time. Here, we aim to provide accessible, pragmatic advice for ECRs in ecology and evolution who are given the opportunity to teach (as instructor of record). The advice is based on the authors’ collective experiences teaching in ecology and evolution as ECRs and is meant to help ECRs address two challenges: a) balancing the demands of teaching against one’s research, service, and personal life, and b) being effective in the classroom while doing so. The guidance we provide includes practical steps to take when teaching for the first time, including carefully refining the syllabus (course planning), adopting ‘non-traditional’ teaching methods, and taking advantage of free teaching resources. We also discuss a range of ‘soft skills’ to consider including guarding against imposter syndrome (i.e., self-doubt and fear of being exposed as a fraud), managing expectations, being empathetic, compassionate, authentic, and fostering an inclusive classroom. Lastly, we emphasize the need to focus on developing students’ critical thinking skills, integrating research and teaching where possible, and setting limits on class preparation time to maintain balance with your research and personal life. Collectively, we hope the examples provided herein offer a useful guide to ECRs new to teaching.</jats:p

    On the relevance of animal behavior to the management and conservation of fishes and fisheries

    Get PDF
    There are many syntheses on the role of animal behavior in understanding and mitigating conservation threats for wildlife. That body of work has inspired the development of a new discipline called conservation behavior. Yet, the majority of those synthetic papers focus on non-fish taxa such as birds and mammals. Many fish populations are subject to intensive exploitation and management and for decades researchers have used concepts and knowledge from animal behavior to support management and conservation actions. Dr. David L. G. Noakes is an influential ethologist who did much foundational work related to illustrating how behavior was relevant to the management and conservation of wild fish. We pay tribute to the late Dr. Noakes by summarizing the relevance of animal behavior to fisheries management and conservation. To do so, we first consider what behavior has revealed about how fish respond to key threats such as habitat alteration and loss, invasive species, climate change, pollution, and exploitation. We then consider how behavior has informed the application of common management interventions such as protected areas and spatial planning, stock enhancement, and restoration of habitat and connectivity. Our synthesis focuses on the totality of the field but includes reflections on the specific contributions of Dr. Noakes. Themes emerging from his approach include the value of fundamental research, management-scale experiments, and bridging behavior, physiology, and ecology. Animal behavior plays a key role in understanding and mitigating threats to wild fish populations and will become more important with the increasing pressures facing aquatic ecosystems. Fortunately, the toolbox for studying behavior is expanding, with technological and analytical advances revolutionizing our understanding of wild fish and generating new knowledge for fisheries managers and conservation practitioners

    Does coastal light pollution alter the nocturnal behavior and blood physiology of juvenile bonefsh (Albula vulpes)?

    No full text
    Light pollution is a prevalent, but often overlooked, ecological concern in a variety of ecosystems. Marine environments are subjected to artifcial lighting from coastal development, in addition to ofshore sources, such as fshing vessels, oil platforms and cruise ships. Fish species that rely on nearshore habitats are most signifcantly impacted by coastal light pollution, as they are often limited to nearshore habitats due to predation risk in deeper ofshore waters, particularly as juveniles. Juvenile bonefsh [Albula vulpes (Linnaeus, 1758)] inhabit the nearshore environment, and are therefore exposed to coastal lighting and other watershed development impacts. Here, we assessed juvenile bonefsh behavior and physiology in the presence of two common light sources: constant street lighting (high pressure sodium) and intermittent car headlights (H4 halogen). Te behavioral responses were compared with a night and day control, whereas physiology was compared only with a night control. Each behavioral trial had two time periods: light and recovery (2 hrs each). Physiology (blood glucose and whole body cortisol) was assessed after an overnight 8-hr exposure. Te results suggest that there is no effect of light pollution on the swimming behavior or whole body cortisol of juvenile bonefsh, but that both forms of light pollution resulted in elevated blood glucose concentrations (a simple stress indicator) relative to controls, with constant light glucose levels being signifcantly higher. Further research is needed to understand the ecological consequences of light pollution on bonefsh and other coastal marine fsh using additional endpoints, assessing fsh over longer time periods, and ideally combining data from the laboratory and the feld
    corecore