28 research outputs found
SCYX-7158, an Orally-Active Benzoxaborole for the Treatment of Stage 2 Human African Trypanosomiasis
Human African trypanosomiasis (HAT) is caused by infection with the parasite Trypanosoma brucei and is an important public health problem in sub-Saharan Africa. New, safe, and effective drugs are urgently needed to treat HAT, particularly stage 2 disease where the parasite infects the brain. Existing therapies for HAT have poor safety profiles, difficult treatment regimens, limited effectiveness, and a high cost of goods. Through an integrated drug discovery project, we have discovered and optimized a novel class of boron-containing small molecules, benzoxaboroles, to deliver SCYX-7158, an orally active preclinical drug candidate. SCYX-7158 cured mice infected with T. brucei, both in the blood and in the brain. Extensive pharmacokinetic characterization of SCYX-7158 in rodents and non-human primates supports the potential of this drug candidate for progression to IND-enabling studies in advance of clinical trials for stage 2 HAT
2,4-Diaminopyrimidines as Potent Inhibitors of Trypanosoma brucei and Identification of Molecular Targets by a Chemical Proteomics Approach
The protozoan parasite Trypanosoma brucei is the causative agent of human African trypanosomiasis (HAT) or sleeping sickness, a fatal disease affecting nearly half a million people in sub-Saharan Africa. Current treatments for HAT have very poor safety profiles and are difficult to administer. There is an urgent need for new, safe and effective treatments for sleeping sickness. This work describes the discovery of 2,4-diaminopyrimidines, exemplified by 4-[4-amino-5-(2-methoxy-benzoyl)-pyrimidin-2-ylamino]-piperidine-1-carboxylic acid phenylamide or SCYX-5070, as potent inhibitors of T. brucei growth in vitro and also in animal models for HAT. To determine the parasite proteins responsible for interaction with SCYX-5070 and related compounds, affinity pull-downs were performed followed by sequence analysis and parasite genome database searching. The work revealed that mitogen-activated protein kinases (MAPKs) and cdc2-related kinases (CRKs) are the major proteins specifically bound to the immobilized compound, suggesting their potential participation in the pharmacological effects of 2,4-diaminopyrimidines against trypanosomatid protozoan parasites. These data strongly support the use of 2,4-diminipyrimidines as leads for the development of new drug candidates for the treatment of HAT
Intestinal microbiota in human health and disease: the impact of probiotics
The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the present state of the art on the intestinal microbiota with specific attention for the application of high-throughput functional microbiomic approaches to determine the contribution of the intestinal microbiota to human health. Moreover, we review the association between dysbiosis of the microbiota and both intestinal and extra-intestinal diseases. Finally, we discuss the potential of probiotic microorganism to modulate the intestinal microbiota and thereby contribute to health and well-being. The effects of probiotic consumption on the intestinal microbiota are addressed, as well as the development of tailor-made probiotics designed for specific aberrations that are associated with microbial dysbiosis