22 research outputs found

    Metallothionein (MT) -I and MT-II Expression Are Induced and Cause Zinc Sequestration in the Liver after Brain Injury

    Get PDF
    Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II) are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured brain itself. In the present study we measured MT-I/II expression in the liver of mice after cryolesion brain injury by quantitative reverse-transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) with the UC1MT antibody. Displacement curves constructed using MT-I/II knockout (MT-I/II−/−) mouse tissues were used to validate the ELISA. Hepatic MT-I and MT-II mRNA levels were significantly increased within 24 hours of brain injury but hepatic MT-I/II protein levels were not significantly increased until 3 days post injury (DPI) and were maximal at the end of the experimental period, 7 DPI. Hepatic zinc content was measured by atomic absorption spectroscopy and was found to decrease at 1 and 3 DPI but returned to normal by 7DPI. Zinc in the livers of MT-I/II−/− mice did not show a return to normal at 7 DPI which suggests that after brain injury, MT-I/II is responsible for sequestering elevated levels of zinc to the liver. Conclusion: MT-I/II is up-regulated in the liver after brain injury and modulates the amount of zinc that is sequestered to the liver

    Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain

    Get PDF
    The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain’s innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed
    corecore