34 research outputs found
What explains ethnic organizational violence? Evidence from Eastern Europe and Russia
Why do some ethnopolitical organizations use violence? Research on substate violence often uses the state level of analysis, or only analyzes groups that are already violent. Using a resource mobilization framework drawn from a broad literature, we test hypotheses with new data on hundreds of violent and non-violent ethnopolitical organizations in Eastern Europe and Russia. Our study finds interorganizational competition, state repression and strong group leadership associated with organizational violence. Lack of popularity and holding territory are also associated with violence. We do not find social service provision positively related to violence, which contrasts with research on the Middle East
Physiological Effects of Superoxide Dismutase on Altered Visual Function of Retinal Ganglion Cells in db/db Mice
Background: The C57BLKS/J db/db (db/db) mouse is a widely used type 2 diabetic animal model, and this model develops early inner retinal neuronal dysfunction beginning at 24 weeks. The neural mechanisms that mediate early stage retinal dysfunction in this model are unknown. We evaluated visual response properties of retinal ganglion cells (RGCs) during the early stage of diabetic insult (8, 12, and 20 wk) in db/db mice and determined if increased oxidative stress plays a role in impaired visual functions of RGCs in 20 wk old db/db mice. Methodology/Principal Findings: In vitro extracellular single-unit recordings from RGCs in wholemount retinas were performed. The receptive field size, luminance threshold, and contrast gain of the RGCs were investigated. Although ONand OFF-RGCs showed a different time course of RF size reduction, by 20 wk, the RF of ON- and OFF-RGCs were similarly affected. The LT of ON-RGCs was significantly elevated in 12 and 20 wk db/db mice compared to the LT of OFF-RGCs. The diabetic injury also affected contrast gains of ON- and OFF-RGCs differently. The generation of reactive oxidative species (ROS) in fresh retina was estimated by dihydroethidium. Superoxide dismutase (SOD) (300 unit/ml) was applied in Ames medium to the retina, and visual responses of RGCs were recorded for five hours. ROS generation in the retinas of db/db mice increased at 8wk and continued to progress at 20 wk of ages. In vitro application of SOD improved visual functions in 20 wk db/db mice but the SOD treatment affected ON- and OFF-RGCs differently in db/m retina
Analysing the mechanism of mitochondrial oxidation-induced cell death using a multifunctional iridium(III) photosensitiser
Mitochondrial oxidation-induced cell death, a physiological process triggered by various cancer therapeutics to induce oxidative stress on tumours, has been challenging to investigate owing to the difficulties in generating mitochondria-specific oxidative stress and monitoring mitochondrial responses simultaneously. Accordingly, to the best of our knowledge, the relationship between mitochondrial protein oxidation via oxidative stress and the subsequent cell death-related biological phenomena has not been defined. Here, we developed a multifunctional iridium(III) photosensitiser, Ir-OA, capable of inducing substantial mitochondrial oxidative stress and monitoring the corresponding change in viscosity, polarity, and morphology. Photoactivation of Ir-OA triggers chemical modifications in mitochondrial protein-crosslinking and oxidation (i.e., oxidative phosphorylation complexes and channel and translocase proteins), leading to microenvironment changes, such as increased microviscosity and depolarisation. These changes are strongly related to cell death by inducing mitochondrial swelling with excessive fission and fusion. We suggest a potential mechanism from mitochondrial oxidative stress to cell death based on proteomic analyses and phenomenological observations. Mitochondrial oxidation-induced cell death is an important physiological process activated by cancer therapeutics, but its investigation is challenging. Here, the authors report a multifunctional iridium(III) photosensitiser, Ir-OA, able to induce mitochondrial oxidative stress and monitor the corresponding changes in mitochondrial properties