81 research outputs found

    Interprofessional and interdisciplinary simulation-based training leads to safe sedation procedures in the emergency department

    Get PDF
    BACKGROUND Sedation is a procedure required for many interventions in the Emergency department (ED) such as reductions, surgical procedures or cardioversions. However, especially under emergency conditions with high risk patients and rapidly changing interdisciplinary and interprofessional teams, the procedure caries important risks. It is thus vital but difficult to implement a standard operating procedure for sedation procedures in any ED. Reports on both, implementation strategies as well as their success are currently lacking. This study describes the development, implementation and clinical evaluation of an interprofessional and interdisciplinary simulation-based sedation training concept. METHODS All physicians and nurses with specialised training in emergency medicine at the Berne University Department of Emergency Medicine participated in a mandatory interdisciplinary and interprofessional simulation-based sedation training. The curriculum consisted of an individual self-learning module, an airway skill training course, three simulation-based team training cases, and a final practical learning course in the operating theatre. Before and after each training session, self-efficacy, awareness of emergency procedures, knowledge of sedation medication and crisis resource management were assessed with a questionnaire. Changes in these measures were compared via paired tests, separately for groups formed based on experience and profession. To assess the clinical effect of training, we collected patient and team satisfaction as well as duration and complications for all sedations in the ED within the year after implementation. We further compared time to beginning of procedure, time for duration of procedure and time until discharge after implementation with the one year period before the implementation. Cohen's d was calculated as effect size for all statistically significant tests. RESULTS Fifty staff members (26 nurses and 24 physicians) participated in the training. In all subgroups, there is a significant increase in self-efficacy and knowledge with high effect size (d z  = 1.8). The learning is independent of profession and experience level. In the clinical evaluation after implementation, we found no major complications among the sedations performed. Time to procedure significantly improved after the introduction of the training (d = 0.88). DISCUSSION Learning is independent of previous working experience and equally effective in raising the self-efficacy and knowledge in all professional groups. Clinical outcome evaluation confirms the concepts safety and feasibility. CONCLUSION An interprofessional and interdisciplinary simulation-based sedation training is an efficient way to implement a conscious sedation concept in an ED

    Computational Lipidology: Predicting Lipoprotein Density Profiles in Human Blood Plasma

    Get PDF
    Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond “bad” and “good” cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a few conventionally used predefined lipoprotein density classes (LDL, HDL), we consider the entire protein and lipid composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the lipoprotein profile) is calculated. As our main results, we (i) successfully reproduced clinically measured lipoprotein profiles of healthy subjects; (ii) assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS), revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii) present model-based predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential molecular causes for individual dyslipidemia

    Biological effects of exposure to magnetic resonance imaging: an overview

    Get PDF
    The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Counting and enumerating partial Latin rectangles by means of computer algebra systems and CSP solvers

    No full text
    This paper provides an in-depth analysis of how computer algebra systems and CSP solvers can be used to deal with the problem of enumerating and distributing the set of r×sr\times s partial Latin rectangles based on nn symbols according to their weight, shape, type or structure. The computation of Hilbert functions and triangular systems of radical ideals enables us to solve this problem for all r,s,n≀6r,s,n\leq 6. As a by-product, explicit formulas are determined for the number of partial Latin rectangles of weight up to six. Further, in order to illustrate the effectiveness of the computational method, we focus on the enumeration of three subsets: (a) non-compressible and regular, (b) totally symmetric, and (c) totally conjugate orthogonal partial Latin squares. In particular, the former enables us to enumerate the set of seminets of point rank up to eight and to prove the existence of two new configurations of point rank eight. Finally, as an illustrative application, it is also exposed a method to construct totally symmetric partial Latin squares that gives rise, under certain conditions, to new families of Lie partial quasigroup rings
    • 

    corecore