10 research outputs found

    Added value of Gd-EOB-DTPA-enhanced Hepatobiliary phase MR imaging in evaluation of focal solid hepatic lesions

    Get PDF
    Background Correct characterization of focal solid hepatic lesions has always been a challenge and is of great diagnostic and therapeutic relevance. The purpose of this study was to determine the added value of hepatobiliary phase images in Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) for differentiating focal solid hepatic lesions. Methods In this retrospective trial 84 consecutive patients underwent Gd-EOB-DTPA-enhanced MR examinations. MRI was conducted for 64 patients with malignant focal hepatic lesions (34 hepatocellular carcinoma (HCC), 30 metastases) and for 20 patients with benign hepatic lesions (14 focal nodular hyperplasia (FNH), 3 adenoma, 3 hemangioma). Five radiologists independently reviewed three sets of MR images by means of a 5-point confidence scale from score 1 (definitely benign) to score 5 (definitely malignant): set 1: unenhanced images; set 2: unenhanced and Gd-EOB-DTPA-enhanced dynamic images; set 3: hepatobiliary phase images in addition to set 2. Accuracy was assessed by the alternative free-response receiver operating characteristic curve (Az) and the index of diagnostic performance was calculated. Results Diagnostic accuracy was significantly improved by the addition of Gd-EOB-DTPA-enhanced dynamic images: Az in set 1 was 0.708 and 0.833 in set 2 (P = 0.0002). The addition of hepatobiliary phase images increased the Az value to 0.941 in set 3 (set 3 vs set 2, P < 0.0001; set 3 vs set 1, P < 0.0001). The index of diagnostic performance was lowest in set 1 (45%), improved in set 2 (71%), and highest in set 3 (94%). Conclusions Hepatobiliary phase images obtained after Gd-EOB-DTPA-enhanced dynamic MRI improve the differentiation of focal solid hepatic lesions. Keywords: Magnetic resonance imaging; Focal hepatic lesions; Gd-EOB-DTPA-enhanced MR imaging; Hepatobiliary; Diagnostic performance; Characterizatio

    Assessment of clinical signs of liver cirrhosis using T1 mapping on Gd-EOB-DTPA-enhanced 3T MRI

    Get PDF
    Objectives To assess the differences between normal and cirrhotic livers by means of T1 mapping of liver parenchyma on gadoxetic acid (Gd-EOB-DTPA)-enhanced 3 Tesla (3T) MR imaging (MRI). Methods 162 patients with normal (n = 96) and cirrhotic livers (n = 66; Child-Pugh class A, n = 30; B, n = 28; C, n = 8) underwent Gd-EOB-DTPA-enhanced 3T MRI. To obtain T1 maps, two TurboFLASH sequences (TI = 400 ms and 1000 ms) before and 20 min after Gd-EOB-DTPA administration were acquired. T1 relaxation times of the liver and the reduction rate between pre- and post-contrast enhancement images were measured. Results The T1 relaxation times for Gd-EOB-DTPA-enhanced MRI showed significant differences between patients with normal liver function and patients with Child-Pugh class A, B, and C (p < 0.001). The T1 relaxation times showed a constant significant increase from Child-Pugh class A up to class C (Child-Pugh class A, 335 ms ± 80 ms; B, 431 ms ± 75 ms; C, 557 ms ± 99 ms; Child-Pugh A to B, p < 0.001; Child-Pugh A to C, p < 0.001; Child-Pugh B to C, p < 0.001) and a constant decrease of the reduction rate of T1 relaxation times (Child-Pugh class A, 57.1% ± 8.8%; B, 44.3% ± 10.2%, C, 29.9% ± 6.9%; Child-Pugh A to B, p < 0.001; Child-Pugh A to C,p < 0.001; Child-Pugh B to C, p < 0.001). Conclusion Gd-EOB-DTPA-enhanced T1 mapping of the liver parenchyma may present a useful method for determining severity of liver cirrhosis

    Chemically modified electrodes

    No full text

    The neuroscience of mindfulness meditation

    No full text
    corecore