15 research outputs found

    Genetic structure of a linear population of Beta vulgaris ssp maritima (sea beet) revealed by isozyme and RFLP analysis

    No full text
    Knowledge of the genetic structure of plant populations is necessary for the understanding of the dynamics of major ecological processes. It also has applications in conservation biology and risk assessment for genetically modified crops. This paper reports the genetic structure of a linear population of sea beet, Beta vulgaris ssp. maritima (the wild relative of sugar beet), on Furzey Island, Poole Harbour. The relative spatial positions of the plants were accurately mapped and the plants were scored for variation at isozyme and RFLP loci. Structure was analysed by repeated subdivision of the population to find the average size of a randomly mating group. Estimates of F-ST between randomly mating units were then made, and gave patterns consistent with the structure of the population being determined largely by founder effects. The implications of these results for the monitoring of transgene spread in wild sea beet populations are discussed

    Inhibition of glycosaminoglycan synthesis using rhodamine B in a mouse model of mucopolysaccharidosis type IIIA

    No full text
    Reduction of an enzyme activity required for the lysosomal degradation of glycosaminoglycan (gag) chains will result in a mucopolysaccharidosis (MPS) disorder. Substrate deprivation therapy (SDT), a potential therapy option for MPS with residual enzyme activity, aims to reduce the synthesis of gag chains, the natural substrate for the deficient enzyme. Reduced substrate levels would balance the reduced level of enzyme in patient cells, resulting in normalized gag turnover. Rhodamine B, a nonspecific inhibitor, reduced gag synthesis in a range of normal and MPS cells and also decreased lysosomal storage of gag in MPS VI (72%) and MPS IIIA (60%) cells. Body weight gain of male MPS IIIA mice treated with 1 mg/kg rhodamine B was reduced compared with untreated MPS IIIA mice and was indistinguishable from that of normal mice. Liver size, total gag content, and lysosomal gag was reduced in treated MPS IIIA animals as was urinary gag excretion. Lysosomal gag content in the brain was also reduced by treatment. The alteration in MPS IIIA clinical pathology by rhodamine B, combined with the observation that treatment had no effect on the health of normal animals, demonstrates the potential for SDT in general as a therapy for MPS disorders
    corecore