377 research outputs found

    Statistical azimuthal structuring of the substorm onset arc: Implications for the onset mechanism

    Get PDF
    The onset of an auroral substorm is generally thought to occur on a quiet, homogeneous auroral arc. We present a statistical study of independently selected substorm onset arcs and find that over 90% of the arcs studied have resolvable characteristic spatial scales in the form of auroral beads. We find that the vast majority (~88%) of auroral beads have small amplitudes relative to the background, making them invisible without quantitative analysis. This confirms that auroral beads are highly likely to be ubiquitous to all onset arcs, rather than a special case phenomena as previously thought. Moreover, as these auroral beads grow exponentially through onset, we conclude that a magnetospheric plasma instability is fundamental to substorm onset itself

    Sudden Commencements and Geomagnetically Induced Currents in New Zealand: Correlations and Dependance

    Get PDF
    Changes in the Earth's geomagnetic field induce geoelectric fields in the solid Earth. These electric fields drive Geomagnetically Induced Currents (GICs) in grounded, conducting infrastructure. These GICs can damage or degrade equipment if they are sufficiently intense—understanding and forecasting them is of critical importance. One of the key magnetospheric phenomena are Sudden Commencements (SCs). To examine the potential impact of SCs we evaluate the correlation between the measured maximum GICs and rate of change of the magnetic field (H′) in 75 power grid transformers across New Zealand between 2001 and 2020. The maximum observed H′ and GIC correlate well, with correlation coefficients (r2) around 0.7. We investigate the gradient of the relationship between H′ and GIC, finding a hot spot close to Dunedin: where a given H′ will drive the largest relative current (0.5 A nT−1 min). We observe strong intralocation variability, with the gradients varying by a factor of two or more at adjacent transformers. We find that GICs are (on average) greater if they are related to: (a) Storm Sudden Commencements (SSCs; 27% larger than Sudden Impulses, SIs); (b) SCs while New Zealand is on the dayside of the Earth (27% larger than the nightside); and (c) SCs with a predominantly East‐West magnetic field change (14% larger than North‐South equivalents). These results are attributed to the geology of New Zealand and the geometry of the power network. We extrapolate to find that transformers near Dunedin would see 2000 A or more during a theoretical extreme SC (H′ = 4000 nT min−1)

    On the effect of line current width and relative position on the multi-spacecraft curlometer technique

    Get PDF
    The response of the multi-spacecraft curlometer technique to variations in the size and relative position of infinitely long line currents with radially varying current density is systematically investigated for spacecraft in a regular tetrahedral formation. It is shown that, for line currents with a width less than the spacecraft separation, there is significant variation in the returned current with position of that current within the tetrahedron. For infinitely thin line currents, the curlometer tends to detect approximately 20% of the input current. For increasingly wide line currents there is less variation of the curlometer results with position of the current and the percentage of current magnitude detected increases. When the width of the current system is half the spacecraft separation, the curlometer tends to detect approximately 80% of the input current. These results are discussed in the context of multi-scale, multi-spacecraft missions. (C) 2010 Elsevier Ltd. All rights reserved

    Average magnetotail electron and proton pitch angle distributions from Cluster PEACE and CIS observations

    Get PDF
    We present results from the first systematic survey of proton and electron pitch angle distributions in the magnetotail, based on Cluster CIS and PEACE data binned by proton plasma beta (beta(p)). The proton distributions conform to the canonical picture of magnetotail ions - a boundary layer made up of Earthward streaming and bidirectional field-aligned particles, consistent with recent observations of time-varying beamlets, which gives way to a broadly isotropic central plasma sheet when beta(p) similar to 3. The electron distributions are significantly different from the canonical picture. A "boundary layer" made up of bidirectional field-aligned electrons is observed to values of beta(p) as high as 17. This boundary quickly gives way to perpendicular-dominated electrons close to the neutral sheet. Hence, our results suggest that, on average, there is no extended, isotropic electron plasma sheet and that the proton plasma sheet is not routinely encountered until higher beta(p) than commonly assumed. Citation: Walsh, A. P., C. J. Owen, A. N. Fazakerley, C. Forsyth, and I. Dandouras (2011), Average magnetotail electron and proton pitch angle distributions from Cluster PEACE and CIS observations, Geophys. Res. Lett., 38, L06103, doi:10.1029/2011GL046770

    New examples of triangular terbium(iii) and holmium(iii) and hexagonal dysprosium(iii) single molecule toroics

    Get PDF
    © 2019 The Royal Society of Chemistry. The structural, magnetic and theoretical aspects are described for three triangular lanthanide complexes, [TbIII3(OH)(teaH2)3(paa)3]Cl2 (1), [DyIII3(OH)(teaH2)3(paa)3]Cl2 (2) and [HoIII3(OH)(teaH2)3(paa)3]Cl2 (3), and a hexanuclear wheel of formula [DyIII6(pdeaH)6(NO3)6] (4) [teaH3 = triethanolamine, paaH = N-(2-pyridyl)-acetoacetamide and pdeaH3 = 3-[bis(2-hydroxyethyl)amino]propan-1-ol]. Each complex displays single molecule toroidal behaviour as rationalised using high-level ab initio calculations. Complexes 2 and 3 are the first examples of mixed moment single molecule toroidal complexes featuring non-Kramers ions

    Rationalizing the sign and magnitude of the magnetic coupling and anisotropy in dinuclear manganese(iii) complexes

    Get PDF
    © 2018 The Royal Society of Chemistry. We have synthesised twelve manganese(iii) dinuclear complexes, 1-12, in order to understand the origin of magnetic exchange (J) between the metal centres and the magnetic anisotropy (D) of each metal ion using a combined experimental and theoretical approach. All twelve complexes contain the same bridging ligand environment of one μ-oxo and two μ-carboxylato, that helped us to probe how the structural parameters, such as bond distance, bond angle and especially Jahn-Teller dihedral angle affect the magnetic behaviour. Among the twelve complexes, we found ferromagnetic coupling for five and antiferromagnetic coupling for seven. DFT computed the J and ab initio methods computed the D parameter, and are in general agreement with the experimentally determined values. The dihedral angle between the two Jahn-Teller axes of the constituent MnIII ions are found to play a key role in determining the sign of the magnetic coupling. Magneto-structural correlations are developed by varying the Mn-O distance and the Mn-O-Mn angle to understand how the magnetic coupling changes upon these structural changes. Among the developed correlations, the Mn-O distance is found to be the most sensitive parameter that switches the sign of the magnetic coupling from negative to positive. The single-ion zero-field splitting of the MnIII centres is found to be negative for complexes 1-11 and positive for complex 12. However, the zero-field splitting of the S = 4 state for the ferromagnetic coupled dimers is found to be positive, revealing a significant contribution from the exchange anisotropy-a parameter which has long been ignored as being too small to be effective

    All-GaN Integrated Cascode Heterojunction Field Effect Transistors

    Get PDF
    All-GaN integrated cascode heterojunction field effect transistors were designed and fabricated for power switching applications. A threshold voltage of +2 V was achieved using a fluorine treatment and a metal-insulator-semiconductor gate structure on the enhancement mode part. The cascode device exhibited an output current of 300 mA/mm by matching the current drivability of both enhancement and depletion mode parts. The optimisation was achieved by shifting the threshold voltage of the depletion mode section to a more negative value with the addition of a dielectric layer under the gate. The switching performance of the cascode was compared to the equivalent GaN enhancement-mode-only device by measuring the hard switching speed at 200 V under an inductive load in a double pulse tester. For the first time, we demonstrate the switching speed advantage of the cascode over equivalent GaN enhancement-mode-only devices, due to the reduced Miller-effect and the unique switching mechanisms. These observations suggest that practical power switches at high power and high switching frequency will benefit as part of an integrated cascode configuration.This work was funded by the Engineering and Physical Sciences Research Council (EPSRC), United Kingdom, under EP/K014471/1 (Silicon Compatible GaN Power Electronics)

    Compositional controls on oceanic plates : geophysical evidence from the MELT area

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 437 (2005): 249-252, doi:10.1038/nature04014.Magnetotelluric (MT) and seismic data, collected during the MELT experiment at the Southern East Pacific Rise (SEPR) constrain the distribution of melt beneath this mid-ocean-ridge spreading center and also the evolution of the oceanic lithosphere during its early cooling history. In this paper, we focus on structure imaged at distances ~100 to 350 km east of the ridge crest, corresponding to seafloor ages of ~1.3 to 4.5 Ma, where the seismic and electrical conductivity structure is nearly constant, independent of age. Beginning at a depth of about 60 km, there is a large increase in electrical conductivity and a change from isotropic to transversely anisotropic electrical structure with higher conductivity in the direction of fast propagation for seismic waves. Because conductive cooling models predict structure that increases in depth with age, extending to about 30 km at 4.5 Ma, we infer that the structure of young oceanic plates is instead controlled by a decrease in water content above 60 km induced by the melting process beneath the spreading center.US participation in the MELT experiment and subsequent analysis was funded by NSF grants through the Marine Geology and Geophysics Program, Ocean Sciences Division
    corecore