105 research outputs found
Current quark mass dependence of nucleon magnetic moments and radii
A calculation of the current-quark-mass-dependence of nucleon static
electromagnetic properties is necessary in order to use observational data as a
means to place constraints on the variation of Nature's fundamental parameters.
A Poincare' covariant Faddeev equation, which describes baryons as composites
of confined-quarks and -nonpointlike-diquarks, is used to calculate this
dependence The results indicate that, like observables dependent on the
nucleons' magnetic moments, quantities sensitive to their magnetic and charge
radii, such as the energy levels and transition frequencies in Hydrogen and
Deuterium, might also provide a tool with which to place limits on the allowed
variation in Nature's constants.Comment: 23 pages, 2 figures, 4 tables, 4 appendice
Galaxy And Mass Assembly (GAMA): refining the local galaxy merger rate using morphological information
We use the Galaxy And Mass Assembly (GAMA) survey to measure the local Universe mass dependent merger fraction and merger rate using galaxy pairs and the CAS structural method, which identifies highly asymmetric merger candidate galaxies. Our goals are to determine which types of mergers produce highly asymmetrical galaxies, and to provide a new measurement of the local galaxy major merger rate. We examine galaxy pairs at stellar mass limits down to M∗ = 108M⊙ with mass ratios of 4:1) the lower mass companion becomes highly asymmetric, while the larger galaxy is much less affected. The fraction of highly asymmetric paired galaxies which have a major merger companion is highest for the most massive galaxies and drops progressively with decreasing mass. We calculate that the mass dependent major merger fraction is fairly constant at _ 1.3 − 2% between 109.5 < M∗ < 1011.5M⊙, and increases to _ 4% at lower masses. When the observability time scales are taken into consideration, the major merger rate is found to approximately triple over the mass range we consider. The total co-moving volume major merger rate over the range 108.0 < M∗ < 1011.5M⊙ is (1.2 ± 0.5) × 10−3 h3 70 Mpc−3 Gyr−1
Galaxy And Mass Assembly (GAMA): refining the local galaxy merger rate using morphological information
We use the Galaxy And Mass Assembly (GAMA) survey to measure the local Universe mass dependent merger fraction and merger rate using galaxy pairs and the CAS structural method, which identifies highly asymmetric merger candidate galaxies. Our goals are to determine which types of mergers produce highly asymmetrical galaxies, and to provide a new measurement of the local galaxy major merger rate. We examine galaxy pairs at stellar mass limits down to M∗ = 108M⊙ with mass ratios of 4:1) the lower mass companion becomes highly asymmetric, while the larger galaxy is much less affected. The fraction of highly asymmetric paired galaxies which have a major merger companion is highest for the most massive galaxies and drops progressively with decreasing mass. We calculate that the mass dependent major merger fraction is fairly constant at _ 1.3 − 2% between 109.5 < M∗ < 1011.5M⊙, and increases to _ 4% at lower masses. When the observability time scales are taken into consideration, the major merger rate is found to approximately triple over the mass range we consider. The total co-moving volume major merger rate over the range 108.0 < M∗ < 1011.5M⊙ is (1.2 ± 0.5) × 10−3 h3 70 Mpc−3 Gyr−1
A review of elliptical and disc galaxy structure, and modern scaling laws
A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their
models to describe the radial distribution of stars in `nebulae'. This article
reviews the progress since then, providing both an historical perspective and a
contemporary review of the stellar structure of bulges, discs and elliptical
galaxies. The quantification of galaxy nuclei, such as central mass deficits
and excess nuclear light, plus the structure of dark matter halos and cD galaxy
envelopes, are discussed. Issues pertaining to spiral galaxies including dust,
bulge-to-disc ratios, bulgeless galaxies, bars and the identification of
pseudobulges are also reviewed. An array of modern scaling relations involving
sizes, luminosities, surface brightnesses and stellar concentrations are
presented, many of which are shown to be curved. These 'redshift zero'
relations not only quantify the behavior and nature of galaxies in the Universe
today, but are the modern benchmark for evolutionary studies of galaxies,
whether based on observations, N-body-simulations or semi-analytical modelling.
For example, it is shown that some of the recently discovered compact
elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to
appear in "Planets, Stars and Stellar
Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references
incl. many somewhat forgotten, pioneer papers. Original submission to
Springer: 07-June-201
The SAMI Galaxy Survey: Early Data Release
We present the Early Data Release of the Sydney–AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. The SAMI Galaxy Survey is an ongoing integral field spectroscopic survey of _3400 low-redshift (z < 0:12) galaxies, covering galaxies in the field and in groups within the Galaxy And Mass Assembly (GAMA) survey regions, and a sample of galaxies in clusters. In the Early Data Release, we publicly release the fully calibrated datacubes for a representative selection of 107 galaxies drawn from the GAMA regions, along with information about these galaxies from the GAMA catalogues. All datacubes for the Early Data Release galaxies can be downloaded individually or as a set from the SAMI Galaxy Survey website. In this paper we also assess the quality of the pipeline used to reduce the SAMI data, giving metrics that quantify its performance at all stages in processing the raw data into calibrated datacubes. The pipeline gives excellent results throughout, with typical sky subtraction residuals in the continuum of 0.9–1.2 per cent, a relative flux calibration uncertainty of 4.1 per cent (systematic) plus 4.3 per cent (statistical), and atmospheric dispersion removed with an accuracy of 0:0009, less than a fifth of a spaxel
The SAMI Galaxy Survey: Early Data Release
We present the Early Data Release of the Sydney–AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. The SAMI Galaxy Survey is an ongoing integral field spectroscopic survey of _3400 low-redshift (z < 0:12) galaxies, covering galaxies in the field and in groups within the Galaxy And Mass Assembly (GAMA) survey regions, and a sample of galaxies in clusters. In the Early Data Release, we publicly release the fully calibrated datacubes for a representative selection of 107 galaxies drawn from the GAMA regions, along with information about these galaxies from the GAMA catalogues. All datacubes for the Early Data Release galaxies can be downloaded individually or as a set from the SAMI Galaxy Survey website. In this paper we also assess the quality of the pipeline used to reduce the SAMI data, giving metrics that quantify its performance at all stages in processing the raw data into calibrated datacubes. The pipeline gives excellent results throughout, with typical sky subtraction residuals in the continuum of 0.9–1.2 per cent, a relative flux calibration uncertainty of 4.1 per cent (systematic) plus 4.3 per cent (statistical), and atmospheric dispersion removed with an accuracy of 0:0009, less than a fifth of a spaxel
Standing waves for acoustic levitation
Standing waves are the most popular method to achieve acoustic trapping. Particles with greater acoustic impedance than the propagation medium will be trapped at the pressure nodes of a standing wave. Acoustic trapping can be used to hold particles of various materials and sizes, without the need of a close-loop controlling system. Acoustic levitation is a helpful and versatile tool for biomaterials and chemistry, with applications in spectroscopy and lab-on-a-droplet procedures. In this chapter, multiple methods are presented to simulate the acoustic field generated by one or multiple emitters. From the acoustic field, models such as the Gor'kov potential or the Flux Integral are applied to calculate the force exerted on the levitated particles. The position and angle of the acoustic emitters play a fundamental role, thus we analyse commonly used configurations such as emitter and reflector, two opposed emitters, or arrangements using phased arrays
MAK-4 and -5 supplemented diet inhibits liver carcinogenesis in mice
<p>Abstract</p> <p>Background</p> <p>Maharishi Amrit Kalash (MAK) is an herbal formulation composed of two herbal mixtures, MAK-4 and MAK-5. These preparations are part of a natural health care system from India, known as Maharishi Ayur-Veda. MAK-4 and MAK-5 are each composed of different herbs and are said to have maximum benefit when used in combination. This investigation evaluated the cancer inhibiting effects of MAK-4 and MAK-5, <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p><it>In vitro </it>assays: Aqueous extracts of MAK-4 and MAK-5 were tested for effects on <it>ras </it>induced cell transformation in the Rat 6 cell line assessed by focus formation assay. <it>In vivo </it>assays: Urethane-treated mice were put on a standard pellet diet or a diet supplemented with MAK-4, MAK-5 or both. At 36 weeks, livers were examined for tumors, sera for oxygen radical absorbance capacity (ORAC), and liver homogenates for enzyme activities of glutathione peroxidase (GPX), glutathione-S-transferase (GST), and NAD(P)H: quinone reductase (QR). Liver fragments of MAK-fed mice were analyzed for connexin (cx) protein expression.</p> <p>Results</p> <p>MAK-5 and a combination of MAK-5 plus MAK-4, inhibited <it>ras</it>-induced cell transformation. In MAK-4, MAK-5 and MAK4+5-treated mice we observed a 35%, 27% and 46% reduction in the development of urethane-induced liver nodules respectively. MAK-4 and MAK4+5-treated mice had a significantly higher ORAC value (<it>P </it>< 0.05) compared to controls (200.2 ± 33.7 and 191.6 ± 32.2 <it>vs. </it>152.2 ± 15.7 ORAC units, respectively). The urethane-treated MAK-4, MAK-5 and MAK4+5-fed mice had significantly higher activities of liver cytosolic enzymes compared to the urethane-treated controls and to untreated mice: GPX(0.23 ± 0.08, 0.21 ± 0.05, 0.25 ± 0.04, 0.20 ± 0.05, 0.21 ± 0.03 U/mg protein, respectively), GST (2.0 ± 0.4, 2.0 ± 0.6, 2.1 ± 0.3, 1.7 ± 0.2, 1.7 ± 0.2 U/mg protein, respectively) and QR (0.13 ± 0.02, 0.12 ± 0.06, 0.15 ± 0.03, 0.1 ± 0.04, 0.11 ± 0.03 U/mg protein, respectively). Livers of MAK-treated mice showed a time-dependent increased expression of cx32.</p> <p>Conclusion</p> <p>Our results show that a MAK-supplemented diet inhibits liver carcinogenesis in urethane-treated mice. The prevention of excessive oxidative damage and the up-regulation of connexin expression are two of the possible effects of these products.</p
The SAMI Galaxy Survey: instrument specification and target selection
The SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi- object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope (AAT) in a 3-year survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12, and 14.5 hours, and cover a total of 144 square degrees (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2dFGRS and SDSS and photometry in regions covered by the Sloan Digital Sky Survey (SDSS) and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes rpet < 19.4, stellar masses 107– 1012M⊙, and environments from isolated field galaxies through groups to clusters of _ 1015M⊙
The SAMI Galaxy Survey: instrument specification and target selection
The SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi- object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope (AAT) in a 3-year survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12, and 14.5 hours, and cover a total of 144 square degrees (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2dFGRS and SDSS and photometry in regions covered by the Sloan Digital Sky Survey (SDSS) and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes rpet < 19.4, stellar masses 107– 1012M⊙, and environments from isolated field galaxies through groups to clusters of _ 1015M⊙
- …