17 research outputs found

    Alterations in metalloprotein abundance under ocean warming in the marine green alga Micromonas pusilla using the mebipred predictive tool

    Get PDF
    Metals are essential to life, required for the functioning of a substantial fraction of proteins. Marine phytoplankton drives the oceanic carbon cycle, influencing global biogeochemistry. These organisms rely on trace metal nutrients; however how trace nutrient demand will change under ocean warming is uncertain. The currently limited annotation of metalloproteins contributes to this lack of understanding. Herein, we utilise the recently published mebipred tool to predict the metalloproteome of the globally occurring green alga, Micromonas pusilla, revealing ∌20 % of its reference proteome to display ion-binding properties. Using the predicted metalloproteome, and existing Gene Ontology annotation, we present a comprehensive insight towards changes in metalloprotein abundance after exposure to ocean warming conditions (+6 °C), using a shotgun proteomic approach. We outline that predictions must be combined with existing annotation to fully capture the metalloprotein response. Approximately 50 % of identified metalloproteins significantly altered in abundance under warming, largely related to changes in cellular function. Notably, warming appeared to shift Fe use from photosynthesis to storage in M. pusilla, indicated by a 2.36 log2 fold-increase in ferritin and decline in abundance of photosynthetic proteins. Ocean warming will inevitably alter cellular use and demand for metal cofactors in marine phytoplankton with possible implications for biogeochemical cycling. Bioinformatics tools such as mebipred greatly expand our ability to examine such changes

    Investigating the Impact of Cerium Oxide Nanoparticles Upon the Ecologically Significant Marine Cyanobacterium Prochlorococcus

    Get PDF
    Cerium oxide nanoparticles (nCeO_{2}) are used at an ever-increasing rate, however, their impact within the aquatic environment remains uncertain. Here, we expose the ecologically significant marine cyanobacterium Prochlorococcus sp. MED4 to nCeO_{2} at a wide range of concentrations (1 ÎŒg L^{–1} to 100 mg L^{–1}) under simulated natural and nutrient rich growth conditions. Flow cytometric analysis of cyanobacterial populations displays the potential of nCeO_{2} (100 ÎŒg L^{–1}) to significantly reduce Prochlorococcus cell density in the short-term (72 h) by up to 68.8% under environmentally relevant conditions. However, following longer exposure (240 h) cyanobacterial populations are observed to recover under simulated natural conditions. In contrast, cell-dense cultures grown under optimal conditions appear more sensitive to exposure during extended incubation, likely as a result of increased rate of encounter between cyanobacteria and nanoparticles at high cell densities. Exposure to supra-environmental nCeO_{2} concentrations (i.e., 100 mg L^{–1}) resulted in significant declines in cell density up to 95.7 and 82.7% in natural oligotrophic seawater and nutrient enriched media, respectively. Observed cell decline is associated with extensive aggregation behaviour of nCeO_{2} upon entry into natural seawater, as observed by dynamic light scattering (DLS), and hetero-aggregation with cyanobacteria, confirmed by fluorescent microscopy. Hence, the reduction of planktonic cells is believed to result from physical removal due to co-aggregation and co-sedimentation with nCeO_{2} rather than by a toxicological and cell death effect. The observed recovery of the cyanobacterial population under simulated natural conditions, and likely reduction in nCeO_{2} bioavailability as nanoparticles aggregate and undergo sedimentation in saline media, means that the likely environmental risk of nCeO_{2} in the marine environment appears low

    Environmentally relevant concentrations of titanium dioxide nanoparticles pose negligible risk to marine microbes

    Get PDF
    Nano-sized titanium dioxide (nTiO2) represents the highest produced nanomaterial by mass worldwide and, due to its prevalent industrial and commercial use, it inevitably reaches the natural environment. Previous work has revealed a negative impact of nTiO2 upon marine phytoplankton growth, however, studies are typically carried out at concentrations far exceeding those measured and predicted to occur in the environment currently. Here, a series of experiments were carried out to assess the effects of both research-grade nTiO2 and nTiO2 extracted from consumer products upon the marine dominant cyanobacterium, Prochlorococcus, and natural marine communities at environmentally relevant and supra-environmental concentrations (i.e., 1 ÎŒg L−1 to 100 mg L−1). Cell declines observed in Prochlorococcus cultures were associated with the extensive aggregation behaviour of nTiO2 in saline media and the subsequent entrapment of microbial cells. Hence, higher concentrations of nTiO2 particles exerted a stronger decline of cyanobacterial populations. However, within natural oligotrophic seawater, cultures were able to recover over time as the nanoparticles aggregated out of solution after 72 h. Subsequent shotgun proteomic analysis of Prochlorococcus cultures exposed to environmentally relevant concentrations confirmed minimal molecular features of toxicity, suggesting that direct physical effects are responsible for short-term microbial population decline. In an additional experiment, the diversity and structure of natural marine microbial communities showed negligible variations when exposed to environmentally relevant nTiO2 concentrations (i.e., 25 ÎŒg L−1). As such, the environmental risk of nTiO2 towards marine microbial species appears low, however the potential for adverse effects in hotspots of contamination exists. In future, research must be extended to consider any effect of other components of nano-enabled product formulations upon nanomaterial fate and impact within the natural environment
    corecore