2,329 research outputs found

    Dopamine suppresses persistent network activity via D(1) -like dopamine receptors in rat medial entorhinal cortex.

    Get PDF
    PublishedJournal ArticleResearch Support, N.I.H., IntramuralResearch Support, Non-U.S. Gov'tThis is the final version of the article. Available from Wiley via the DOI in this record.Cortical networks display persistent activity in the form of periods of sustained synchronous depolarizations ('UP states') punctuated by periods of relative hyperpolarization ('DOWN states'), which together form the slow oscillation. UP states are known to be synaptically generated and are sustained by a dynamic balance of excitation and inhibition, with fast ionotropic glutamatergic excitatory and GABAergic inhibitory conductances increasing during the UP state. Previously, work from our group demonstrated that slow metabotropic GABA receptors also play an important role in terminating the UP state, but the effects of other neuromodulators on this network phenomenon have received little attention. Given that persistent activity is a neural correlate of working memory and that signalling through dopamine receptors has been shown to be critical for working memory tasks, we examined whether dopaminergic neurotransmission affected the slow oscillation. Here, using an in vitro model of the slow oscillation in rat medial entorhinal cortex, we showed that dopamine strongly and reversibly suppressed cortical UP states. We showed that this effect was mediated through D1 -like and not D2 -like dopamine receptors, and we found no evidence that tonic dopaminergic transmission affected UP states in our model.This work was supported by the Wellcome Trust OXION initiative (M.T.C. and O.P.) and a National Institute of Child Health and Human Development (NICHD) intramural award (C.J.M.). M.T.C. held a Wellcome Trust Prize Studentship. E.W.M. is supported by the NIH MD/PhD Partnership Training programme and by the Rhodes Trust

    Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Information processing in neuronal networks relies on the precise synchronization of ensembles of neurons, coordinated by the diverse family of inhibitory interneurons. Cortical interneurons can be usefully parsed by embryonic origin, with the vast majority arising from either the caudal or medial ganglionic eminences (CGE and MGE). Here, we examine the activity of hippocampal interneurons during gamma oscillations in mouse CA1, using an in vitro model where brief epochs of rhythmic activity were evoked by local application of kainate. We found that this CA1 KA-evoked gamma oscillation was faster than that in CA3 and, crucially, did not appear to require the involvement of fast-spiking basket cells. In contrast to CA3, we also found that optogenetic inhibition of pyramidal cells in CA1 did not significantly affect the power of the oscillation, suggesting that excitation may not be essential for gamma genesis in this region. We found that MGE-derived interneurons were generally more active than CGE interneurons during CA1 gamma, although a group of CGE-derived interneurons, putative trilaminar cells, were strongly phase-locked with gamma oscillations and, together with MGE-derived axo-axonic and bistratified cells, provide attractive candidates for being the driver of this locally generated, predominantly interneuron-driven model of gamma oscillations

    Hippocampal gabaergic inhibitory interneurons

    Get PDF
    This is the author accepted manuscript. The final version is available from American Physiological Society via the DOI in this record In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10–15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage-and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.National Institute of Child Health and Human Developmen

    A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes

    Get PDF
    Background: Highly parallel,‘second generation’ sequencing technologies have rapidly expanded the number of bacterial whole genome sequences available for study, permitting the emergence of the discipline of population genomics. Most of these data are publically available as unassembled short-read sequence files that require extensive processing before they can be used for analysis. The provision of data in a uniform format, which can be easily assessed for quality, linked to provenance and phenotype and used for analysis, is therefore necessary. Results: The performance of de novo short-read assembly followed by automatic annotation using the pubMLST. orgNeisseriadatabase was assessed and evaluated for 108 diverse, representative, and well-characterisedNeisseria meningitidisisolates. High-quality sequences were obtained for >99% of known meningococcal genes among the de novoassembled genomes and four resequenced genomes and less than 1% of reassembled genes had sequence discrepancies or misassembled sequences. A core genome of 1600 loci, present in at least 95% of the population, was determined using the Genome Comparator tool. Genealogical relationships compatible with, but at a higher resolution than, those identified by multilocus sequence typing were obtained with core genome comparisons and ribosomal protein gene analysis which revealed a genomic structure for a number of previously described phenotypes. This unified system for cataloguing Neisseria genetic variation in the genome was implemented and used for multiple analyses and the data are publically available in the PubMLST Neisseria database. Conclusions: The de novo assembly, combined with automated gene-by-gene annotation, generates high quality draft genomes in which the majority of protein-encoding genes are present with high accuracy. The approach catalogues diversity efficiently, permits analyses of a single genome or multiple genome comparisons, and is a practical approach to interpreting WGS data for large bacterial population samples. The method generates novel insights into the biology of the meningococcus and improves our understanding of the whole population structure, not just disease causing lineages.</p

    Simplified aortic cannulation (SAC) – a useful technique for neonates with small aortas

    Get PDF
    A simplified means of arterial cannulation for cardiopulmonary bypass in small neonates and those infants with diminutive aortas, or requiring reconstruction of the ascending aorta, is presented. It involves suturing a long 3.5 mm graft to the innominate artery and inserting the arterial cannula into the end of the graft. This technique improves exposure, thereby greatly simplifying many complex repairs, and may be used for initiation of ECMO or for hybrid procedures in the postoperative period

    Afferent specific role of NMDA receptors for the circuit integration of hippocampal neurogliaform cells.

    Get PDF
    This is the final version of the article. Available from Nature Publishing Group via the DOI in this record.Appropriate integration of GABAergic interneurons into nascent cortical circuits is critical for ensuring normal information processing within the brain. Network and cognitive deficits associated with neurological disorders, such as schizophrenia, that result from NMDA receptor-hypofunction have been mainly attributed to dysfunction of parvalbumin-expressing interneurons that paradoxically express low levels of synaptic NMDA receptors. Here, we reveal that throughout postnatal development, thalamic, and entorhinal cortical inputs onto hippocampal neurogliaform cells are characterized by a large NMDA receptor-mediated component. This NMDA receptor-signaling is prerequisite for developmental programs ultimately responsible for the appropriate long-range AMPAR-mediated recruitment of neurogliaform cells. In contrast, AMPAR-mediated input at local Schaffer-collateral synapses on neurogliaform cells remains normal following NMDA receptor-ablation. These afferent specific deficits potentially impact neurogliaform cell mediated inhibition within the hippocampus and our findings reveal circuit loci implicating this relatively understudied interneuron subtype in the etiology of neurodevelopmental disorders characterized by NMDA receptor-hypofunction.Proper brain function depends on the correct assembly of excitatory and inhibitory neurons into neural circuits. Here the authors show that during early postnatal development in mice, NMDAR signaling via activity of long-range synaptic inputs onto neurogliaform cells is required for their appropriate integration into the hippocampal circuitry.We thank Daniel Abebe for mouse colony maintenance and Kurt Auville for additional assistance with confocal imaging. We thank UNC Vector Core and Ed Boyden, MIT, Cambridge, MA, USA for generously providing AAV9-syn-Chrimson-TdTomato and AAV9-syn-Chronos-GFP. This work was supported by an intramural award to C.J.M. from the Eunice Kennedy–Shriver National Institute of Child Health and Human Development and a Competitive Fellowship Award to J.C.W. from the National Institute of Neurological Disorders and Strok

    Caffeine, CYP1A2 genotype, and sports performance: is timing important?

    Get PDF

    Molecular Dissection of Neuroligin 2 and Slitrk3 Reveals an Essential Framework for GABAergic Synapse Development

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record In the brain, many types of interneurons make functionally diverse inhibitory synapses onto principal neurons. Although numerous molecules have been identified to function in inhibitory synapse development, it remains unknown whether there is a unifying mechanism for development of diverse inhibitory synapses. Here we report a general molecular mechanism underlying hippocampal inhibitory synapse development. In developing neurons, the establishment of GABAergic transmission depends on Neuroligin 2 (NL2), a synaptic cell adhesion molecule (CAM). During maturation, inhibitory synapse development requires both NL2 and Slitrk3 (ST3), another CAM. Importantly, NL2 and ST3 interact with nanomolar affinity through their extracellular domains to synergistically promote synapse development. Selective perturbation of the NL2-ST3 interaction impairs inhibitory synapse development with consequent disruptions in hippocampal network activity and increased seizure susceptibility. Our findings reveal how unique postsynaptic CAMs work in concert to control synaptogenesis and establish a general framework for GABAergic synapse development. Li et al. report a hierarchical process mediated by Neuroligin 2 and Slitrk3 for GABAergic synapse development. Neuroligin 2 also interacts with Slitrk3 to regulate GABAergic synaptogenesis. Selective perturbation of this interaction decreases GABAergic synaptic transmission and impairs hippocampal network activities.NIH/NINDS Intramural Research ProgramNIH/NICHD Intramural Research ProgramNIH/NEI Intramural Research Progra
    • 

    corecore