2 research outputs found
From sparse to dense and from assortative to disassortative in online social networks
Inspired by the analysis of several empirical online social networks, we
propose a simple reaction-diffusion-like coevolving model, in which individuals
are activated to create links based on their states, influenced by local
dynamics and their own intention. It is shown that the model can reproduce the
remarkable properties observed in empirical online social networks; in
particular, the assortative coefficients are neutral or negative, and the power
law exponents are smaller than 2. Moreover, we demonstrate that, under
appropriate conditions, the model network naturally makes transition(s) from
assortative to disassortative, and from sparse to dense in their
characteristics. The model is useful in understanding the formation and
evolution of online social networks.Comment: 10 pages, 7 figures and 2 table