112 research outputs found

    Unusual becoming Usual: recent persistent-rainstorm events and their implications for debris flow risk management in the northern Apennines of Italy

    Get PDF
    The alluvial events of Parma (13 October 2014) and Piacenza (13-14 September 2015) in the northern Apennines of Italy have had significant effects in terms of flooding and morphological changes along the main and secondary rivers of the affected areas. The paper presents a summary of the characteristics of the rainstorm events, as well as of the triggered debris flows and their consequences on infrastructures. In the perspective of an extremization of rainfall regimes as a consequence of ongoing climate changes, these phenomena might become quite usual in the future and should be further studied in order to define regional-specific triggering thresholds, analyse precursors from weather radar datasets and assess susceptibility on a regional scale basis

    Displacements of an Active Moderately Rapid Landslide\u2014A Dataset Retrieved by Continuous GNSS Arrays

    Get PDF
    This paper describes a dataset of continuous GNSS positioning solutions referring to slope movements in the Ca’ Lita landslide (Northern Apennines, Italy). The dataset covers the period from 24 March 2016 to 17 July 2019 and includes time-series of the daily position of three GNSS rovers located in different parts of the landslide: head zone, upper track zone, and lower track zone. Two different types of continuous GNSS arrays have been used: one is based on high-end Leica geodetic receivers, and the other is based on low-cost effective Emlid receivers. Displacements captured in the dataset are up to more than a hundred meters and are characterized by prolonged phases of slow movement and moderately rapid acceleration phases. The data presented in this contribution were used to underline slope processes and validate displacements retrieved by the application of digital image correlation to a stack of a satellite images

    Rapid Assessment of Landslide Dynamics by UAV-RTK Repeated Surveys Using Ground Targets: The Ca’ Lita Landslide (Northern Apennines, Italy)

    Get PDF
    The combined use of Uncrewed Aerial Vehicles (UAVs) with an integrated Real Time Kinematic (RTK) Global Navigation Satellite System (GNSS) module and an external GNSS base station allows photogrammetric surveys with centimeter accuracy to be obtained without the use of ground control points. This greatly reduces acquisition and processing time, making it possible to perform rapid monitoring of landslides by installing permanent and clearly recognizable optical targets on the ground. In this contribution, we show the results obtained in the Ca’ Lita landslide (Northern Apennines, Italy) by performing multi-temporal RTK-aided UAV surveys. The landslide is a large-scale roto-translational rockslide evolving downslope into an earthslide–earthflow. The test area extends 60 × 103 m2 in the upper track zone, which has recently experienced two major reactivations in May 2022 and March 2023. A catastrophic event took place in May 2023, but it goes beyond the purpose of the present study. A total of eight UAV surveys were carried out from October 2020 to March 2023. A total of eight targets were installed transversally to the movement direction. The results, in the active portion of the landslide, show that between October 2020 and March 2023, the planimetric displacement of targets ranged from 0.09 m (in the lateral zone) to 71.61 m (in the central zone). The vertical displacement values ranged from −2.05 to 5.94 m, respectively. The estimated positioning errors are 0.01 (planimetric) and 0.03 m (vertical). The validation, performed by using data from a permanent GNSS receiver, shows maximum differences of 0.18 m (planimetric) and 0.21 m (vertical). These results, together with the rapidity of image acquisition and data processing, highlight the advantages of using this rapid method to follow the evolution of relatively rapid landslides such as the Ca’ Lita landslide

    Bioinspired Materials for Sensor and Clinical Applications: Two Case Studies

    Get PDF
    The growing interest in bio-inspired materials is driven by the need for increasingly targeted and efficient devices that also have a low ecological impact. These devices often use specially developed materials (e.g., polymers, aptamers, monoclonal antibodies) capable of carrying out the process of recognizing and capturing a specific target in a similar way to biomaterials of natural origin. In this article, we present two case studies, in which the target is a biomolecule of medical interest, in particular, alpha-thrombin and cytokine IL-6. In these examples, different biomaterials are compared to establish, with a theoretical-computational procedure known as proteotronics, which of them has the greatest potential for use in a biodevice

    MONITORING AND CHARACTERIZATION OF A SPRING IN A FRACTURED SANDSTONE SLAB

    Get PDF
    Fractured sandstone by tectonic and gravity actions could be classified as aquitard or aquifer according to the number and aperture of the fractures inside the rock mass. This kind of rock mass outcrops not frequently and sparsely in the Apennine and Alps chains. In the Emilian Apennines, which is mainly composed by sedimentary rocks (rich in clay), this type of rock is part of the Epiligurian Succession that outcrops for a 20 percent of the chain. The paper aims to highlight the first results of the semi-continuous water flow monitoring (discharge, electrical conductivity and temperature) and stable isotopic monitoring (delta18O and delta2H) of the spring that represents the drainage point of a vertical fractures system. This network joint characterizes the vertical scarp of a sandstone slab with thickness of 100 meters. The results show that the spring flow rate, the water electrical conductivity, temperature and isotopic values are influenced by the rainfall distribution pattern. Consequently during every rainfall event the spring discharge and water electrical conductivity increase, while the water temperature decreases and isotopic values become more negative. The new infiltrate water reachs the spring with a delay of 10-60 hours. The discharge variability index is around 270 percent. The fractured system is characterized by replacement effect of the preexistent groundwater. During the infiltration event, dissolution phenomena are observed along the wall of the fractures. A preliminary groundwater budget calculation highlights that only a potential infiltration coefficient higher that 75 percent is admitted to justify the total annual volume discharge from the fractures

    DEBRIS FLOWS IN VAL PARMA AND VAL BAGANZA (NORTHERN APENNINES) DURING THE 12-13TH OCTOBER 2014 ALLUVIAL EVENT IN PARMA PROVINCE (ITALY)

    Get PDF
    During the 13 October 2014 rainstorm event that affected the Val Parma and Val Baganza area, several debris flows affected the Mt. Cervellino relief (northern Apennines, Italy), causing severe and widespread damages to check-dams, roads and other infrastructures. Such event, together with the Piacenza province event of 2015, has generated the perception of debris flows as a breaking new potential cause of widespread damages in the Emilia-Romagna. The meteorological event of October 2014, reconstructed by means of rain gauges and radar data, reached intensities as high as 80 mm/hour, which is well above any debris flow triggering thresholds presented in literature. However, data show that debris flows have occurred in any location where 30 mm/hour were exceeded. The result was the occurrence of tens of debris flows, which were triggered in zones of failure of slope debris coverage along the streams, and that remobilized and scoured debris along the track and destroyed several check dams and damaged roads that were overflown by debris. This paper is aimed to document the distribution and characteristics of the debris flow events that occurred during such event. By doing so, it also warns against this potentially destructive events that, in a changing meteorological framework, might result much more frequent and widespread than expected also in the northern Apennines

    Toward a centralized data management center for integrated landslide monitoring in Emilia Romagna Region (Italy)

    Get PDF
    In Emilia Romagna Region, slope monitoring systems have become more widely used for hazard and risk management. However, they are generally non-interoperable. Moreover dispersion of monitoring data in several local databases have made data sharing among the involved institutional actors quite laborious and often untimely. A centralized database and a web-based portal that integrate infor- mation derived by different types of slope monitoring systems has been developed. The paper illustrates the specific features of the developed “SensorNet” and provides examples of its use for visualizing and analyzing in an integrated manner data from different monitoring systems. In perspective it could serve as an every-day operational tool for a timely reporting of landslide monitoring data for surveillance and warning purposes

    Spatial Olfactory Memory and Spatial Olfactory Navigation, Assessed with a Variant of Corsi Test, Is Modulated by Gender and Sporty Activity

    Get PDF
    Many studies have focused on navigation, spatial skills, and the olfactory system in comparative models, including those concerning the relationship between them and physical activity. Although the results are often in contrast with each other, it is assumed that physical activity can affect cognition in different ways-both indirectly and through a certain influence on some brain structures. In contrast, there is little research that focuses on the relationship between spatial abilities and olfactory abilities in humans. This research aimed to evaluate and compare the performance in working memory tasks of athletes and non-athletes who require good visual-spatial navigation, olfactory-spatial navigation, and olfactory-semantic skills. The study involved 236 participants (83 athletes) between the ages of 18 and 40. All subjects were matched by age or sex. The standard Corsi Block Tapping Test (CBTT) was administrated to investigate the visual-spatial memory. Olfactory-spatial navigation and olfactory-semantic skills were assessed with two modified versions of CBTT: Olfactory CBTT (OCBTT) and Semantic-Olfactory CBTT (SOCBTT) respectively. The results show differences between the CORSI conditions in direction of a poor performance for athletes. A gender effect in favor of men was also found, particularly in the classic version of the CBTT. Both groups performed better in the classic version of the CBTT than OCBTT and SOCBTT. The mean of SOCBTT results is markedly lower, perhaps due to the different information processing systems needed to perform this kind of task. It is possible to explain how sports practice can affect tasks that require spatial skills and olfactory perception differently, thus supporting new hypotheses and opening new scientific horizons

    Multitemporal Analysis of Slow-Moving Landslides and Channel Dynamics through Integrated Remote Sensing and In Situ Techniques

    Get PDF
    The relationships between hillslope and fluvial processes were studied in a mountainous area of the Northern Apennines (Italy) where intermittent landslide activity has interacted for a long time with river morphodynamics. The aim of the study was to analyse such relationships in two study sites of the Scoltenna catchment. The sites were analysed in detail and monitored through time. A long-term analysis was carried out based on multitemporal photointerpretation of aerial photos. Slope morphological changes and land use modifications since 1954 were detected and compared with the evolution of the channel morphology. A short-term analysis was also performed based on two monitoring campaigns accomplished in 2021 and 2022 in order to detect possible slope displacements and channel-bed-level changes. The techniques used are global navigation satellite systems and drone photogrammetry accompanied by geomorphological surveys and mapping. The multitemporal data collected allowed us to characterise slope surface deformations and quantify morphological changes. The combination of various techniques of remote and proximal sensing proved to be a useful tool for the analysis of the surface deformations and for the investigation of the interaction between slope and fluvial dynamics, showing the important role of fluvial processes in the remobilisation of the landslide toe causing the displacement of a significant volume of sediment into the stream
    corecore