15 research outputs found

    Algorithmic deformation of matrix factorisations

    Full text link
    Branes and defects in topological Landau-Ginzburg models are described by matrix factorisations. We revisit the problem of deforming them and discuss various deformation methods as well as their relations. We have implemented these algorithms and apply them to several examples. Apart from explicit results in concrete cases, this leads to a novel way to generate new matrix factorisations via nilpotent substitutions, and to criteria whether boundary obstructions can be lifted by bulk deformations.Comment: 30 page

    Remarks on quiver gauge theories from open topological string theory

    Get PDF
    We study effective quiver gauge theories arising from a stack of D3-branes on certain Calabi-Yau singularities. Our point of view is a first principle approach via open topological string theory. This means that we construct the natural A-infinity-structure of open string amplitudes in the associated D-brane category. Then we show that it precisely reproduces the results of the method of brane tilings, without having to resort to any effective field theory computations. In particular, we prove a general and simple formula for effective superpotentials

    Defect Perturbations in Landau-Ginzburg Models

    Full text link
    Perturbations of B-type defects in Landau-Ginzburg models are considered. In particular, the effect of perturbations of defects on their fusion is analyzed in the framework of matrix factorizations. As an application, it is discussed how fusion with perturbed defects induces perturbations on boundary conditions. It is shown that in some classes of models all boundary perturbations can be obtained in this way. Moreover, a universal class of perturbed defects is constructed, whose fusion under certain conditions obey braid relations. The functors obtained by fusing these defects with boundary conditions are twist functors as introduced in the work of Seidel and Thomas.Comment: 46 page

    Generalized Berezin quantization, Bergman metrics and fuzzy laplacians

    No full text
    We study extended Berezin and Berezin-Toeplitz quantization for compact Kähler manifolds, two related quantization procedures which provide a general framework for approaching the construction of fuzzy compact Kähler geometries. Using this framework, we show that a particular version of generalized Berezin quantization, which we baptize ''Berezin-Bergman quantization'', reproduces recent proposals for the construction of fuzzy Kähler spaces. We also discuss how fuzzy laplacians can be defined in our general framework and study a few explicit examples. Finally, we use this approach to propose a general explicit definition of fuzzy scalar field theory on compact Kähler manifolds. © 2008 SISSA

    Strong Homotopy Lie Algebras, Generalized Nahm Equations and Multiple M2-branes

    No full text
    We review various generalizations of the notion of Lie algebras, in particular those appearing in the recently proposed Bagger-Lambert-Gustavsson model, and study their interrelations. We find that Filippov's n-Lie algebras are a special case of strong homotopy Lie algebras. Furthermore, we define a class of homotopy Maurer-Cartan equations, which contains both the Nahm and the Basu-Harvey equations as special cases. Finally, we show how the super Yang-Mills equations describing a Dp-brane and the Bagger-Lambert-Gustavsson equations supposedly describing M2-branes can be rewritten as homotopy Maurer-Cartan equations, as well
    corecore