52 research outputs found
Ancient hydrothermal seafloor deposits in Eridania basin on Mars
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/. The file attached is the Published/publisher’s pdf version of the article
Lunar samples record an impact 4.2 billion years ago that may have formed the Serenitatis Basin
Impact cratering on the Moon and the derived size-frequency distribution functions of lunar impact craters are used to determine the ages of unsampled planetary surfaces across the Solar System. Radiometric dating of lunar samples provides an absolute age baseline, however, crater-chronology functions for the Moon remain poorly constrained for ages beyond 3.9 billion years. Here we present U–Pb geochronology of phosphate minerals within shocked lunar norites of a boulder from the Apollo 17 Station 8. These minerals record an older impact event around 4.2 billion years ago, and a younger disturbance at around 0.5 billion years ago. Based on nanoscale observations using atom probe tomography, lunar cratering records, and impact simulations, we ascribe the older event to the formation of the large Serenitatis Basin and the younger possibly to that of the Dawes crater. This suggests the Serenitatis Basin formed unrelated to or in the early stages of a protracted Late Heavy Bombardment
Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars
Lakes existed on Mars later than 3.6 billion years ago, according to sedimentary evidence for deltaic deposition. The observed fluviolacustrine deposits suggest that individual lake-forming climates persisted for at least several thousand years (assuming dilute flow). But the lake watersheds’ little-weathered soils indicate a largely dry climate history, with intermittent runoff events. Here we show that these observational constraints, although inconsistent with many previously proposed triggers for lake-forming climates, are consistent with a methane burst scenario. In this scenario, chaotic transitions in mean obliquity drive latitudinal shifts in temperature and ice loading that destabilize methane clathrate. Using numerical simulations, we find that outgassed methane can build up to atmospheric levels sufficient for lake-forming climates, if methane clathrate initially occupies more than 4% of the total volume in which it is thermodynamically stable. Such occupancy fractions are consistent with methane production by water–rock reactions due to hydrothermal circulation on early Mars. We further estimate that photochemical destruction of atmospheric methane curtails the duration of individual lake-forming climates to less than a million years, consistent with observations. We conclude that methane bursts represent a potential pathway for intermittent excursions to a warm, wet climate state on early Mars
Evidence for Young Volcanism on Mercury from the Third MESSENGER Flyby
During its first two flybys of Mercury, the MESSENGER spacecraft acquired images confirming that
pervasive volcanism occurred early in the planet\u2019s history. MESSENGER\u2019s third Mercury flyby
revealed a 290-kilometer-diameter peak-ring impact basin, among the youngest basins yet seen,
having an inner floor filled with spectrally distinct smooth plains. These plains are sparsely
cratered, postdate the formation of the basin, apparently formed from material that once
flowed across the surface, and are therefore interpreted to be volcanic in origin. An irregular
depression surrounded by a halo of bright deposits northeast of the basin marks a candidate
explosive volcanic vent larger than any previously identified on Mercury. Volcanism on the
planet thus spanned a considerable duration, perhaps extending well into the second half of
solar system history
- …