13 research outputs found

    Synthesis of p- and n-type Gels Doped with Ionic Charge Carriers

    Get PDF
    In this study, we synthesized the new kinds of semiconducting polymeric gels having negative (n-type) and positive (p-type) counter ions as charge carriers. The polyacrylamide gel was doped with pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid, trisodium salt), havingions as side groups and Na+ as counter ions, so-called p-type semiconducting gel. The doping process was performed during the polymerization where the pyranine binds to the polymer strands over OH group chemically via radical addition. In a similar way, N-isopropylacrylamide (NIPA) gel was doped with methacrylamidopropyltrimethyl ammonium chloride (MAPTAC), having Cl− as counter ions, so-called n-type semiconducting gel. Here MAPTAC was embedded by copolymerization within the polymer network (NIPA). These semiconducting gels can show different electrical properties by changing the concentration of the doping agents, swelling ratio etc. We have shown that the pn junction, formed by combining p-type and n-type gels together in close contact, rectifies the current similar to the conventional Si and Ge diodes

    Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation

    No full text
    Hoven CV, Wang H, Elbing M, Garner L, Winkelhaus D, Bazan GC. Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation. NATURE MATERIALS. 2010;9(3):249-252.Widely used solid-state devices fabricated with inorganic semiconductors, including light-emitting diodes and solar cells, derive much of their function from the p-n junction. Such junctions lead to diode characteristics and are attained when p-doped and n-doped materials come into contact with each other. Achieving bilayer p-n junctions with semiconducting polymers has been hindered by difficulties in the deposition of thin films with independent p-doped and n-doped layers(1,2). Here we report on how to achieve permanently fixed organic p-n heterojunctions by using a cationic conjugated polyelectrolyte with fluoride counteranions and an underlayer composed of a neutral conjugated polymer bearing anion-trapping functional groups. Application of a bias leads to charge injection and fluoride migration into the neutral layer, where irreversible covalent bond formation takes place. After the initial charging and doping, one obtains devices with no delay in the turn on of light-emitting electrochemical behaviour and excellent current rectification. Such devices highlight how mobile ions in organic media can open opportunities to realize device structures in ways that do not have analogies in the world of silicon and promise new opportunities for integrating organic materials within technologies now dominated by inorganic semiconductors

    Effect of Surface Contamination on the Performance of HVDC Insulators

    No full text
    corecore