488 research outputs found

    Report from solar physics

    Get PDF
    A discussion of the nature of solar physics is followed by a brief review of recent advances in the field. These advances include: the first direct experimental confirmation of the central role played by thermonuclear processes in stars; the discovery that the 5-minute oscillations of the Sun are a global seismic phenomenon that can be used as a probe of the structure and dynamical behavior of the solar interior; the discovery that the solar magnetic field is subdivided into individual flux tubes with field strength exceeding 1000 gauss. Also covered was a science strategy for pure solar physics. Brief discussions are given of solar-terrestrial physics, solar/stellar relationships, and suggested space missions

    Monte Carlo calibration of the SMM gamma ray spectrometer for high energy gamma rays and neutrons

    Get PDF
    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission spacecraft was primarily designed and calibrated for nuclear gamma ray line measurements, but also has a high energy mode which allows the detection of gamma rays at energies above 10 MeV and solar neutrons above 20 MeV. The GRS response has been extrapolated until now for high energy gamma rays from an early design study employing Monte Carlo calculations. The response to 50 to 600 MeV solar neutrons was estimated from a simple model which did not consider secondary charged particles escaping into the veto shields. In view of numerous detections by the GRS of solar flares emitting high energy gamma rays, including at least two emitting directly detectable neutrons, the calibration of the high energy mode in the flight model has been recalculated by the use of more sophisticated Monte Carlo computer codes. New results presented show that the GRS response to gamma rays above 20 MeV and to neutrons above 100 MeV is significantly lower than the earlier estimates

    Interfaces - Weak Links, Yet Great Opportunities

    Get PDF
    Inadequate turbomachine interface design can rapidly degrade system performance, yet provide great opportunity for improvements. Engineered coatings of seals and bearing interfaces are major issues in the operational life of power systems. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining component life. Interface coatings, like lubricants, are sacrificial for the benefit of the component. Bearing and sealing surfaces are routinely protected by tribologically paired coatings such as silicon diamond like coatings (SiDLC) in combination with an oil lubricated wave bearing that prolongs bearing operational life. Likewise, of several methods used or researched for detecting interface failures, dopants within coatings show failures in functionally graded ceramic coatings. The Bozzolo-Ferrante-Smith (BFS) materials models and quantum mechanical tools, employed in interface design, are discussed

    Particle acceleration

    Get PDF
    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV

    Time extended production of neutrons during a solar flare

    Get PDF
    The most energetic neutral emissions expected from solar flares are gamma rays (10 MeV) from relativistic primary and secondary electron bremsstrahlung,from approx 0 meson decay, and from neutrons ( 50 MeV). Bremsstrahlung photon energies extend to that of the highest energy electron present, but the shape of the pi sup 0 gamma ray spectrum, peaking at 69 MeV, does not depend strongly on the proton spectrum above threshold, which is approx. 292 MeV for meson production on protons. The highest energy neutrons observed indicate directly the highest energy ions which interact at the Sun, and the presence or absence of anergy cutoff in the acceleration process. The high-energy proton spectrum shape can be determined from the neutron spectrum

    The Equivalence Principle and g-2 Experiments

    Get PDF
    We consider the possibility of using measurements of anomalous magnetic moments of elementary particles as a possible test of the Einstein Equivalence Principle (EEP). For the class non-metric theories of gravity described by the \tmu formalism we find several novel mechanisms for breaking the EEP, and discuss the possibilities of setting new empirical constraints on such effects.Comment: 4 pages, latex, epsf, 1 figur

    Sealing in Turbomachinery

    Get PDF
    Clearance control is of paramount importance to turbomachinery designers and is required to meet today's aggressive power output, efficiency, and operational life goals. Excessive clearances lead to losses in cycle efficiency, flow instabilities, and hot gas ingestion into disk cavities. Insufficient clearances limit coolant flows and cause interface rubbing, overheating downstream components and damaging interfaces, thus limiting component life. Designers have put renewed attention on clearance control, as it is often the most cost effective method to enhance system performance. Advanced concepts and proper material selection continue to play important roles in maintaining interface clearances to enable the system to meet design goals. This work presents an overview of turbomachinery sealing to control clearances. Areas covered include: characteristics of gas and steam turbine sealing applications and environments, benefits of sealing, types of standard static and dynamics seals, advanced seal designs, as well as life and limitations issues

    Two-Bit Gates are Universal for Quantum Computation

    Full text link
    A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum gates operating on just two bits at a time are sufficient to construct a general quantum circuit. The best previous result had shown the universality of three-bit gates, by analogy to the universality of the Toffoli three-bit gate of classical reversible computing. Two-bit quantum gates may be implemented by magnetic resonance operations applied to a pair of electronic or nuclear spins. A ``gearbox quantum computer'' proposed here, based on the principles of atomic force microscopy, would permit the operation of such two-bit gates in a physical system with very long phase breaking (i.e., quantum phase coherence) times. Simpler versions of the gearbox computer could be used to do experiments on Einstein-Podolsky-Rosen states and related entangled quantum states.Comment: 21 pages, REVTeX 3.0, two .ps figures available from author upon reques

    Polarized 129Xe129Xe optical pumping/spin exchange and delivery system for magnetic resonance spectroscopy and imaging studies

    Full text link
    We describe the design and construction of a laser-polarized 129Xe129Xe production and delivery system that is used in our in vitro and in vivo magnetic resonance imaging (MRI) experiments. The entire apparatus including lasers and optics, rapidly actuated valves, heating and cooling, and transport tubing lies in the high magnetic field environment of a 2 T MRI magnet. With approximately 7.5% 129Xe129Xe polarization, 157 cc atm of xenon gas is produced and stored as xenon ice every 5 min. Large quantities of polarized 129Xe129Xe can be obtained by cycling this process. The xenon is subsequently delivered in a controlled fashion to a sample or subject. With this device we have established the feasibility of using laser-polarized 129Xe129Xe as a magnetic tracer in MRI. This reliable, effective, and relatively simple production method for large volumes of 129Xe129Xe can be applied to other areas of research involving the use of laser-polarized noble gases. © 1999 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69879/2/RSINAK-70-2-1546-1.pd

    On linearity of separating multi-particle differential Schr\"odinger operators for identical particles

    Full text link
    We show that hierarchies of differential Schroedinger operators for identical particles which are separating for the usual (anti-)symmetric tensor product, are necessarily linear, and offer some speculations on the source of quantum linearity.Comment: As accepted by Journal of Mathematical Physics. Original title "Separating multi-particle differential Schroedinger operators for identical particles are necessarily linear". Some new discussion and references. Main result unchanged. Uses RevTeX 4, 9 page
    • …
    corecore