271 research outputs found

    Generic names in Magnaporthales

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The order Magnaporthales comprises about 200 species and includes the economically and scientifically important rice blast fungus and the take-all pathogen of cereals, as well as saprotrophs and endophytes. Recent advances in phylogenetic analyses of these fungi resulted in taxonomic revisions. In this paper we list the 28 currently accepted genera in Magnaporthales with their type species and available gene and genome resources. The polyphyletic Magnaporthe 1972 is proposed for suppression, and Pyricularia 1880 and Nakataea 1939 are recommended for protection as the generic names for the rice blast fungus and the rice stem rot fungus, respectively. The rationale for the recommended names is also provided. These recommendations are made by the Pyricularia/Magnaporthe Working Group established under the auspices of the International Commission on the Taxonomy of Fungi (ICTF).This work was partially supported by the National Science Foundation of the United States (grant number DEB 1145174 and DEB 1452971) to Ning Zhang

    Contribution of ‘human induced fires’ to forest and savanna land conversion dynamics in the Luki Biosphere Reserve landscape, western Democratic Republic of Congo

    Full text link
    peer reviewedHuman-induced fire is one of the most important determinants of forest cover and change in tropical and subtropical regions of the world. Yet its impact on forest cover and forest cover change remains unclear, as fires in Africa generally do not spread over very large area. This is particularly the case in the Democratic Republic of Congo (DRC), a region of the world that is still poorly investigated. Here, we propose to study the effect of humaninduced fire on land use and land cover change in a protected area of the DRC, i.e. the Luki Biosphere Reserve (LBR). We investigate tree cover changes in and around the reserve between 2002 and 2019 using Landsat 7 ETM+, Landsat 8 OLI/TIRS and MODIS MCD12Q1 images and quantify human induced fires using MODIS MCD64A1 images. The study combines land use and land cover (LULC) change detection analysis of four images, two acquired in 2002 and two acquired in 2019, with multi-temporal assessment of annual burnt area acquired between 2002 and 2019 from MODIS MCD64A1 to assess the role of fire in LULC changes and the sensitivity of different LULC types to fire. The results show a dynamic conversion of primary forest to secondary forest over about 16% of the area, the evolution of savanna to secondary forest over 9.6% (Landsat image) and the replacement of secondary forest by savanna over 8.1% (MODIS image) of the total area of Luki Reserve. Of the total area undergoing land use change, 34.1% (Landsat image) and 35.7% (MODIS image) were caused by fire, which however did not cause a significant LULC change. For the LULC types that experienced fire events, the least stable type was KEYWORD

    HAX-1 overexpression, splicing and cellular localization in tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HAX-1 has been described as a protein potentially involved in carcinogenesis and especially metastasis. Its involvement in regulation of apoptosis and cell migration along with some data indicating its overexpression in cancer cell lines and tumors suggests that HAX-1 may play a role in neoplastic transformation. Here we present the first systematic analysis of HAX-1 expression in several solid tumors.</p> <p>Methods</p> <p>Using quantitative RT-PCR, we have determined the mRNA levels of <it>HAX1 </it>splice variant I in several solid tumors. We have also analyzed by semiquantitative and quantitative RT-PCR the expression of five <it>HAX-1 </it>splice variants in breast cancer samples and in normal tissue from the same individuals. Quantitative PCR was also employed to analyze the effect of estrogen on <it>HAX1 </it>expression in breast cancer cell line. Immunohistochemical analysis of HAX-1 was performed on normal and breast cancer samples.</p> <p>Results</p> <p>The results reveal statistically important <it>HAX1 </it>up-regulation in breast cancer, lung cancer and melanoma, along with some minor variations in the splicing pattern. HAX-1 up-regulation in breast cancer samples was confirmed by immunohistochemical analysis, which also revealed an intriguing HAX-1 localization in the nuclei of the tumor cells, associated with strong ER status.</p> <p>Conclusion</p> <p>HAX-1 elevated levels in cancer tissues point to its involvement in neoplastic transformation, especially in breast cancer. The connection between HAX-1 nuclear location and ER status in breast cancer samples remains to be clarified.</p

    Phenotypic Plasticity of Mouse Spermatogonial Stem Cells

    Get PDF
    BACKGROUND:Spermatogonial stem cells (SSCs) continuously undergo self-renewal division to support spermatogenesis. SSCs are thought to have a fixed phenotype, and development of a germ cell transplantation technique facilitated their characterization and prospective isolation in a deterministic manner; however, our in vitro SSC culture experiments indicated heterogeneity of cultured cells and suggested that they might not follow deterministic fate commitment in vitro. METHODOLOGY AND PRINCIPAL FINDINGS:In this study, we report phenotypic plasticity of SSCs. Although c-kit tyrosine kinase receptor (Kit) is not expressed in SSCs in vivo, it was upregulated when SSCs were cultured on laminin in vitro. Both Kit(-) and Kit(+) cells in culture showed comparable levels of SSC activity after germ cell transplantation. Unlike differentiating spermatogonia that depend on Kit for survival and proliferation, Kit expressed on SSCs did not play any role in SSC self-renewal. Moreover, Kit expression on SSCs changed dynamically once proliferation began after germ cell transplantation in vivo. CONCLUSIONS/SIGNIFICANCE:These results indicate that SSCs can change their phenotype according to their microenvironment and stochastically express Kit. Our results also suggest that activated and non-activated SSCs show distinct phenotypes

    In Vitro Germ Cell Differentiation from Cynomolgus Monkey Embryonic Stem Cells

    Get PDF
    BACKGROUND: Mouse embryonic stem (ES) cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro. METHODS AND FINDINGS: To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis). VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB) formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA) 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene. CONCLUSION: VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the identification and characterization of germ cells derived from ES cells are possible by using reported germ cell markers in vivo, including SSEA1, OCT-4, and VASA, in vitro as well as in vivo. These findings are thus considered to help elucidate the germ cell developmental process in primates

    Interaction between NANOS2 and the CCR4-NOT Deadenylation Complex Is Essential for Male Germ Cell Development in Mouse

    Get PDF
    Nanos is one of the evolutionarily conserved proteins implicated in germ cell development and we have previously shown that it interacts with the CCR4-NOT deadenylation complex leading to the suppression of specific RNAs. However, the molecular mechanism and physiological significance of this interaction have remained elusive. In our present study, we identify CNOT1, a component of the CCR4-NOT deadenylation complex, as a direct factor mediating the interaction with NANOS2. We find that the first 10 amino acids (AAs) of NANOS2 are required for this binding. We further observe that a NANOS2 mutant lacking these first 10 AAs (NANOS2-ΔN10) fails to rescue defects in the Nanos2-null mouse. Our current data thus indicate that the interaction with the CCR4-NOT deadenylation complex is essential for NANOS2 function. In addition, we further demonstrate that NANOS2-ΔN10 can associate with specific mRNAs as well as wild-type NANOS2, suggesting the existence of other NANOS2-associated factor(s) that determine the specificity of RNA-binding independently of the CCR4-NOT deadenylation complex

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2

    Multiple Translocation of the AVR-Pita Effector Gene among Chromosomes of the Rice Blast Fungus Magnaporthe oryzae and Related Species

    Get PDF
    Magnaporthe oryzae is the causal agent of rice blast disease, a devastating problem worldwide. This fungus has caused breakdown of resistance conferred by newly developed commercial cultivars. To address how the rice blast fungus adapts itself to new resistance genes so quickly, we examined chromosomal locations of AVR-Pita, a subtelomeric gene family corresponding to the Pita resistance gene, in various isolates of M. oryzae (including wheat and millet pathogens) and its related species. We found that AVR-Pita (AVR-Pita1 and AVR-Pita2) is highly variable in its genome location, occurring in chromosomes 1, 3, 4, 5, 6, 7, and supernumerary chromosomes, particularly in rice-infecting isolates. When expressed in M. oryzae, most of the AVR-Pita homologs could elicit Pita-mediated resistance, even those from non-rice isolates. AVR-Pita was flanked by a retrotransposon, which presumably contributed to its multiple translocation across the genome. On the other hand, family member AVR-Pita3, which lacks avirulence activity, was stably located on chromosome 7 in a vast majority of isolates. These results suggest that the diversification in genome location of AVR-Pita in the rice isolates is a consequence of recognition by Pita in rice. We propose a model that the multiple translocation of AVR-Pita may be associated with its frequent loss and recovery mediated by its transfer among individuals in asexual populations. This model implies that the high mobility of AVR-Pita is a key mechanism accounting for the rapid adaptation toward Pita. Dynamic adaptation of some fungal plant pathogens may be achieved by deletion and recovery of avirulence genes using a population as a unit of adaptation
    corecore