1,296 research outputs found

    The phase diagram and bulk thermodynamical quantities in the NJL model at finite temperature and density

    Full text link
    We reexamine the recent instanton motivated studies of Alford, Rajagopal and Wilczek, and Berges and Rajagopal in the framework of the standard SU(2) Nambu-Jona-Lasinio model. The chiral phase diagram is calculated in the temperature--density plane, and the pressure is evaluated as the function of the density. Obtaining simple approximate relations describing the TT-μ\mu and TT-pFp_F phase transition lines we find that the results of the instanton based model and that of the NJL model are identical. The diquark transition line is also given.Comment: 11 pages LaTeX plus 7 PS figures. One figure has been added and there are some changes in the text describing thi

    Transferring orbital and spin angular momenta of light to atoms

    Full text link
    Light beams carrying orbital angular momentum, such as Laguerre-Gaussian beams, give rise to the violation of the standard dipolar selection rules during the interaction with matter yielding, in general, an exchange of angular momentum larger than hbar per absorbed photon. By means of ab initio 3D numerical simulations, we investigate in detail the interaction of a hydrogen atom with intense Gaussian and Laguerre-Gaussian light pulses. We analyze the dependence of the angular momentum exchange with the polarization, the orbital angular momentum, and the carrier-envelope phase of light, as well as with the relative position between the atom and the light vortex. In addition, a quantum-trajectory approach based on the de Broglie-Bohm formulation of quantum mechanics is used to gain physical insight into the absorption of angular momentum by the hydrogen atom

    Shaped-pulse optimisation of coherent soft-x-rays

    Full text link
    High-harmonic generation is one of the most extreme nonlinear-optical processes observed to date. By focusing an intense laser pulse into a gas, the light-atom interaction that occurs during the process of ionising the atoms results in the generation of harmonics of the driving laser frequency, that extend up to order ~300 (corresponding to photon energies from 4 to >500eV). Because this technique is simple to implement and generates coherent, laser-like, soft-x-ray beams, it is currently being developed for applications in science and technology including probing of dynamics in chemical and materials systems and for imaging. In this work we demonstrate that by carefully controlling the shape of intense light pulses of 6-8 optical cycles, we can control the interaction of light with an atom as it is being ionised, in a way that improves the efficiency of x-ray generation by an order of magnitude. Furthermore, we demonstrate that it is possible to control the spectral characteristics of the emitted radiation and to channel the interaction between different-order nonlinear processes. The result is an increased utility of harmonic generation as a light source, as well as the first demonstration of optical pulse-shaping techniques to control high-order nonlinear processes.Comment: 16 pages, 3 figure

    Time-dependent quantum Monte Carlo and the stochastic quantization

    Full text link
    We examine the relation between the recently proposed time-dependent quantum Monte Carlo (TDQMC) method and the principles of stochastic quantization. In both TDQMC and stochastic quantization particle motion obeys stochastic guidance equations to preserve quantum equilibrium. In this way the probability density of the Monte Carlo particles corresponds to the modulus square of the many-body wave function at all times. However, in TDQMC the motion of particles and guide waves occurs in physical space unlike in stochastic quantization where it occurs in configuration space. Hence the practical calculation of time evolution of many-body fully correlated quantum systems becomes feasible within the TDQMC methodology. We illustrate the TDQMC technique by calculating the symmetric and antisymmetric ground state of a model one-dimensional Helium atom, and the time evolution of the dipole moment when the atom is irradiated by a strong ultrashort laser pulse.Comment: 40 pages, 4 figures, replaced fig.

    Spin-dependent twist-4 matrix elements from the instanton vacuum: Flavor-singlet and nonsinglet

    Get PDF
    We estimate the twist-4 spin-1 nucleon matrix element f_2 in an instanton-based description of the QCD vacuum. In addition to the flavor-nonsinglet we compute also the flavor-singlet matrix element, which appears in next-to-leading order of the (1/N_c)-expansion. The corresponding twist-3 spin-2 matrix elements d_2 are suppressed in the packing fraction of the instanton medium, (\bar \rho)/(\bar R) << 1. We use our results to estimate the leading (1/Q^2) power corrections to the first moment of the proton and neutron spin structure functions G_1, as well as the intrinsic charm contribution to the nucleon spin.Comment: 17 pages, 4 eps figures include

    Chiral Symmetry and the Nucleon Structure Functions

    Get PDF
    The isospin asymmetry of the sea quark distribution as well as the unexpectedly small quark spin fraction of the nucleon are two outstanding discoveries recently made in the physics of deep-inelastic structure functions. We evaluate here the corresponding quark distribution functions within the framework of the chiral quark soliton model, which is an effective quark model of baryons maximally incorporating the most important feature of low energy QCD, i.e. the chiral symmetry and its spontaneous breakdown. It is shown that the model can explain qualitative features of the above-mentioned nucleon structure functions within a single framework, thereby disclosing the importance of chiral symmetry in the physics of high energy deep-inelastic scatterings.Comment: 20pages, LaTex, 5 Postscript figures A numerical error of the original version was corrected. The discussion on the regularization dependence of distribution functions has been added. A comparison with the low energy-scale parametrization of Gloeck, Reya and Vogt has been mad

    The SST-1M camera for the Cherenkov Telescope Array

    Get PDF
    The prototype camera of the single-mirror Small Size Telescopes (SST-1M) proposed for the Cherenkov Telescope Array (CTA) project has been designed to be very compact and to deliver high performance over thirty years of operation. The camera is composed of an hexagonal photo-detection plane made of custom designed large area hexagonal silicon photomultipliers and a high throughput, highly configurable, fully digital readout and trigger system (DigiCam). The camera will be installed on the telescope structure at the H. Niewodnicza{\'n}ski institute of Nuclear Physics in Krakow in fall 2015. In this contribution, we review the steps that led to the development of the innovative photo-detection plane and readout electronics, and we describe the test and calibration strategy adopted.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.05894; Full consortium author list at http://cta-observatory.or

    Lattice Calculation of the Strangeness Magnetic Moment of the Nucleon

    Get PDF
    We report on a lattice QCD calculation of the strangeness magnetic moment of the nucleon. Our result is GMs(0)=0.36±0.20G_M^s(0) = - 0.36 \pm 0.20 . The sea contributions from the u and d quarks are about 80% larger. However, they cancel to a large extent due to their electric charges, resulting in a smaller net sea contribution of 0.097±0.037μN - 0.097 \pm 0.037 \mu_N to the nucleon magnetic moment. As far as the neutron to proton magnetic moment ratio is concerned, this sea contribution tends to cancel out the cloud-quark effect from the Z-graphs and result in a ratio of 0.68±0.04 -0.68 \pm 0.04 which is close to the SU(6) relation and the experiment. The strangeness Sachs electric mean-square radius E_E is found to be small and negative and the total sea contributes substantially to the neutron electric form factor.Comment: 10 pages, 5 figures, LaTex, UK/97-23, ADP-97-55/T28

    Software design for the control system for Small-Size Telescopes with single-mirror of the Cherenkov Telescope Array

    Full text link
    The Small-Size Telescope with single-mirror (SST-1M) is a 4 m Davies-Cotton telescope and is among the proposed telescope designs for the Cherenkov Telescope Array (CTA). It is conceived to provide the high-energy (>> few TeV) coverage. The SST-1M contains proven technology for the telescope structure and innovative electronics and photosensors for the camera. Its design is meant to be simple, low-budget and easy-to-build industrially. Each device subsystem of an SST-1M telescope is made visible to CTA through a dedicated industrial standard server. The software is being developed in collaboration with the CTA Medium-Size Telescopes to ensure compatibility and uniformity of the array control. Early operations of the SST-1M prototype will be performed with a subset of the CTA central array control system based on the Alma Common Software (ACS). The triggered event data are time stamped, formatted and finally transmitted to the CTA data acquisition. The software system developed to control the devices of an SST-1M telescope is described, as well as the interface between the telescope abstraction to the CTA central control and the data acquisition system.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589
    corecore