20 research outputs found

    Curvature-informed multi-task learning for graph networks

    Full text link
    Properties of interest for crystals and molecules, such as band gap, elasticity, and solubility, are generally related to each other: they are governed by the same underlying laws of physics. However, when state-of-the-art graph neural networks attempt to predict multiple properties simultaneously (the multi-task learning (MTL) setting), they frequently underperform a suite of single property predictors. This suggests graph networks may not be fully leveraging these underlying similarities. Here we investigate a potential explanation for this phenomenon: the curvature of each property's loss surface significantly varies, leading to inefficient learning. This difference in curvature can be assessed by looking at spectral properties of the Hessians of each property's loss function, which is done in a matrix-free manner via randomized numerical linear algebra. We evaluate our hypothesis on two benchmark datasets (Materials Project (MP) and QM8) and consider how these findings can inform the training of novel multi-task learning models.Comment: Published at the ICML 2022 AI for Science workshop: https://openreview.net/forum?id=m5RYtApKFO

    Evaluating the diversity and utility of materials proposed by generative models

    Full text link
    Generative machine learning models can use data generated by scientific modeling to create large quantities of novel material structures. Here, we assess how one state-of-the-art generative model, the physics-guided crystal generation model (PGCGM), can be used as part of the inverse design process. We show that the default PGCGM's input space is not smooth with respect to parameter variation, making material optimization difficult and limited. We also demonstrate that most generated structures are predicted to be thermodynamically unstable by a separate property-prediction model, partially due to out-of-domain data challenges. Our findings suggest how generative models might be improved to enable better inverse design.Comment: 12 pages, 9 figures. Published at SynS & ML @ ICML2023: https://openreview.net/forum?id=2ZYbmYTKo

    A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems

    Full text link
    Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.Comment: To appear in Neural Network
    corecore