23,020 research outputs found
Open Boundary Condition, Wilson Flow and the Scalar Glueball Mass
A major problem with periodic boundary condition on the gauge fields used in
current lattice gauge theory simulations is the trapping of topological charge
in a particular sector as the continuum limit is approached. To overcome this
problem open boundary condition in the temporal direction has been proposed
recently. One may ask whether open boundary condition can reproduce the
observables calculated with periodic boundary condition. In this work we find
that the extracted lowest glueball mass using open and periodic boundary
conditions at the same lattice volume and lattice spacing agree for the range
of lattice scales explored in the range 3 GeV 1/a 5 GeV. The
problem of trapping is overcome to a large extent with open boundary and we are
able to extract the glueball mass at even larger lattice scale 5.7
GeV. To smoothen the gauge fields and to reduce the cut off artifacts recently
proposed Wilson flow is used. The extracted glueball mass shows remarkable
insensitivity to the lattice spacings in the range explored in this work, 3 GeV
1/a 5.7 GeV.Comment: Replacement agrees with published versio
- β¦