11 research outputs found

    Can Short- and Middle-Range Hybrids Describe the Hyperpolarizabilities of Long-Range Charge-Transfer Compounds?

    No full text
    The hyperpolarizabilities of five prototypical and four recently synthesized long-range charge-transfer (CT) organic compounds are calculated using short- and middle-range (SR and MR) hybrid functionals. These results are compared with data from MP2 and other DFT methods including GGAs, global hybrids, long-range corrected functionals (LC-DFT), and optimally tuned LC-DFT. Although it is commonly believed that the overestimation of hyperpolarizabilities associated with CT excitations by GGA and global hybrid functionals is the result of their wrong asymptotic exchange potential, and that LC-DFT heals this issue, we show here that SR and MR functionals yield results similar to those from LC-DFT. Hence, the long-range correction per se does not appear to be the key element in the well-known improved description of hyperpolarizabilities by LC-DFT. Rather, we argue that the inclusion of substantial amounts of Hartree-Fock exchange, which reduces the many-electron self-interaction error, is responsible for the relatively good results afforded by range separated hybrids. Additionally, we evaluate the effects of solvent and frequency on hyperpolarizabilities computed by SR and MR hybrids and compare these predictions with other DFT methods and available experimental data

    Meiotic roles of Mec1, a budding yeast homolog of mammalian ATR/ATM

    No full text
    Budding yeast Mec1, a homolog of mammalian ATR/ATM, is an essential chromosome-based signal transduction protein. Mec1 is a key checkpoint regulator and plays a critical role in the maintenance of genome stability. Mec1 is also required for meiosis; loss of Mec1 functions leads to a number of meiotic defects including reduction in recombination, loss of inter-homolog bias, loss of crossover control, and failure in meiotic progression. Here we review currently available data on meiotic defects associated with loss of Mec1 functions and discuss the possibility that Mec1 may participate as a fundamentally positive player in coordinating and promoting basic meiotic chromosomal processes during normal meiosis

    The Chemistry of Azetidin-3-ones, Oxetan-3-ones, and Thietan-3-ones

    No full text
    corecore