108 research outputs found

    Combined Thermo-Hydraulic Analysis of a Cryogenic Jet

    Get PDF
    A cryogenic jet is a phenomenon encountered in different fields like some technological processes and cryosurgery. It may also be a result of cryogenic equipment rupture or a cryogen discharge from the cryostats following resistive transition in superconducting magnets. Heat exchange between a cold jet and a warm steel element (e.g. a buffer tank wall or a transfer line vacuum vessel wall) may result in an excessive localisation of thermal strains and stresses. The objective of the analysis is to get a combined (analytical and experimental) one-dimensional model of a cryogenic jet that will enable estimation of heat transfer intensity between the jet and steel plate with a suitable accuracy for engineering applications. The jet diameter can only be determined experimentally. The mean velocity profile can be calculated from the fact that the total flux of momentum along the jet axis is conserved. The proposed model allows deriving the jet crown area with respect to the distance from the vent and the mean velocity profile along the jet axis. A simple formula to assess convective heat exchange between the jet and a solid obstacle has been proposed and experimentally verified

    Thermo-mechanical Analysis of Cold Helium Injection into Gas Storage Tanks made of Carbon Steel Following Resistive Transition of the LHC Magnets

    Get PDF
    A resistive transition (quench) of the LHC sector magnets will be followed by cold helium venting to a quench buffer volume of 2000 m3 at ambient temperature. The volume will be composed of eight medi um-pressure (2 MPa) gas storage tanks made of carbon steel, which constrains the temperature of the wall to be higher than -50oC (223 K). The aim of the analysis is the assessment of a possible spot c ooling intensity and thermo-mechanical stresses in the tank wall following helium injection

    Helium Discharge and Dispersion In the LHC Accelerator Tunnel in Case of Cryogenic Failure

    Get PDF
    The Large Hadron Collider (LHC), presently under construction at CERN, will contain about 100 tonnes of helium, mostly located in the underground tunnel and caverns [1]. Potential failure modes of the accelerator, which may be followed by helium discharge to the tunnel, have been identified and the corresponding helium flows calculated. The paper presents the analysis of the helium discharge in the worst case of conditions, as well as the corresponding helium dispersion along the tunnel. The variation of oxygen concentration has been calculated and the oxygen deficiency hazard (ODH) analysed. The preventive means of protection, namely location and sizing of safety valves are also discussed

    An Experimental Study of Cold Helium Dispersion in Air

    Get PDF
    The Large Hadron Collider (LHC) presently under construction at CERN, will contain about 100 tons of helium mostly located in the underground tunnel and in caverns. Potential failure modes of the accelerator, which may be followed by helium discharge to the tunnel, have been identified and the corresponding helium flows calculated. To verify the analytical calculations of helium dispersion in the tunnel, a dedicated test set-up has been built. It represents a section of the LHC tunnel at a scale 1:13 and is equipped with a controllable helium relief system enabling the simulation of different scenarios of the LHC cryogenic system failures. Corresponding patterns of cold helium dispersion in air have been observed and analysed with respect to oxygen deficiency hazard. We report on the test set-up and the measurement results, which have been scaled to real LHC conditions

    Experimental Simulation of Helium Discharge into the LHC Tunnel

    Get PDF
    The LHC cryogenic system contains about 100 tons of liquid helium. The highest amount of helium is located in the magnet cold mass (about 58 tons @ 1.9 K, 0.13 MPa), in the QRL supply header C (about 26 tons @ 4.6 K, 0.36 MPa) and in the ring line (about 0.7 tons 290 K, 2 MPa). The rupture of header C is one of the failures leading to the worst scenario of helium discharge into the tunnel. To investigate the consequences of this failure an experiment has been performed. This paper presents the layout of the test set-up and compares the experimental results with calculated data

    Optimisation of Multilayer Insulation: an Engineering Approach

    Get PDF
    A mathematical model has been developed to describe the heat flux through multilayer insulation (MLI). The total heat flux between the layers is the result of three distinct heat transfer modes: radiation, residual gas conduction and solid spacer conduction. The model describes the MLI behaviour considering a layer-to-layer approach and is based on an electrical analogy, in which the three heat transfer modes are treated as parallel thermal impedances. The values of each of the transfer mode vary from layer to layer, although the total heat flux remains constant across the whole MLI blanket. The model enables the optimisation of the insulation with regard to different MLI parameters, such as residual gas pressure, number of layers and boundary temperatures. The model has been tested with experimental measurements carried out at CERN and the results revealed to be in a good agreement, especially for insulation vacuum between 10-5 Pa and 10-3 Pa

    Experimental and Mathematical Analysis of Multilayer Insulation below 80 K

    Get PDF
    The Large Hadron Collider [1], presently under construction at CERN, will make an extensive use of multilayer insulation system (MLI). The total surface to be insulated will be of about 80000 m2. A mathematical model has been developed to describe the heat flux through MLI from 80 K to 4.2 K. The total heat flux between the layers is the result of three distinct heat transfer modes: radiation, residual gas conduction and solid conduction. The mathematical model enables prediction of MLI behavior with regard to different MLI parameters, such as gas insulation pressure, number of layers and boundary temperatures. The calculated values have been compared to the experimental measurements carried out at CERN. Theoretical and experimental results revealed to be in good agreement, especially for insulation vacuum between 10-5 Pa and 10-3 Pa

    Thermohydraulics of Quenches and Helium Recovery in the LHC Magnet Strings

    Get PDF
    In preparation for the Large Hadron Collider project, a 42.5 m-long prototype superconducting magnet string, representing a half-cell of the machine lattice, has been built and operated. A series of tests was performed to assess the thermohydraulics of resistive transitions (quenches) of the superconducting magnets. These measurements provide the necessary foundation for describing the observed evolution of the helium in the cold mass and formulating a mathematical model based on energy conservation. The evolution of helium after a quench simulated with the model reproduces the observations. We then extend the simulations to a full LHC cell, and finally analyse the recovery of helium discharged from the cold mass

    Oxygen Deficiency Hazard (ODH) Monitoring System in the LHC Tunnel

    Get PDF
    The Large Hadron Collider (LHC) presently under construction at CERN, will contain about 100 tons of helium mostly located in equipment in the underground tunnel and in caverns. Potential failure modes of the accelerator, which may be followed by helium discharge to the tunnel, have been identified and the corresponding helium flows calculated [1, 2, 3]. In case of helium discharge in the tunnel causing oxygen deficiency, personnel working in the tunnel shall be warned and evacuate safely. This paper describes oxygen deficiency monitoring system based on the parameter of limited visibility due to the LHC tunnel curvature and acceptable delay time between the failure and the system activation

    Modelling of Helium-mediated Quench Propagation in the LHC Prototype Test String-1

    Get PDF
    The Large Hadron Collider (LHC) prototype test string-1, hereafter referred to as the string, is composed of three ten-meter long prototype dipole magnets and one six-meter long prototype quadrupole magnet. The magnets are immersed in a pressurized static bath of superfluid helium that is maintained at a pressure of about 1 bar and at a temperature of about 1.9 K. This helium bath constitutes one single hydraulic unit, extending along the 42.5 m of the string length. We have measured the triggering of quenches of the string magnets due to the quenching of a single dipole magnet located at the string's extremity; i.e. "quench propagation". Previously reported measurements enabled to establish that in this configuration the quench propagation is mediated by the helium and not by the inter-magnet busbar connections [1], [2]. We present a model of helium mediated quench propagation based on the qualitative conclusions of these two previous papers, and on additional information gained from a dedicated series of quench propagation measurements that were not previously reported. We will discuss the specific mechanisms and their main parameters involved at different time scales of the propagation process, and apply the model to make quantitative predictions
    • …
    corecore