1,342 research outputs found

    Analyzing the Latent Space of GAN through Local Dimension Estimation

    Full text link
    The impressive success of style-based GANs (StyleGANs) in high-fidelity image synthesis has motivated research to understand the semantic properties of their latent spaces. In this paper, we approach this problem through a geometric analysis of latent spaces as a manifold. In particular, we propose a local dimension estimation algorithm for arbitrary intermediate layers in a pre-trained GAN model. The estimated local dimension is interpreted as the number of possible semantic variations from this latent variable. Moreover, this intrinsic dimension estimation enables unsupervised evaluation of disentanglement for a latent space. Our proposed metric, called Distortion, measures an inconsistency of intrinsic tangent space on the learned latent space. Distortion is purely geometric and does not require any additional attribute information. Nevertheless, Distortion shows a high correlation with the global-basis-compatibility and supervised disentanglement score. Our work is the first step towards selecting the most disentangled latent space among various latent spaces in a GAN without attribute labels

    Finding the global semantic representation in GAN through Frechet Mean

    Full text link
    The ideally disentangled latent space in GAN involves the global representation of latent space with semantic attribute coordinates. In other words, considering that this disentangled latent space is a vector space, there exists the global semantic basis where each basis component describes one attribute of generated images. In this paper, we propose an unsupervised method for finding this global semantic basis in the intermediate latent space in GANs. This semantic basis represents sample-independent meaningful perturbations that change the same semantic attribute of an image on the entire latent space. The proposed global basis, called Fr\'echet basis, is derived by introducing Fr\'echet mean to the local semantic perturbations in a latent space. Fr\'echet basis is discovered in two stages. First, the global semantic subspace is discovered by the Fr\'echet mean in the Grassmannian manifold of the local semantic subspaces. Second, Fr\'echet basis is found by optimizing a basis of the semantic subspace via the Fr\'echet mean in the Special Orthogonal Group. Experimental results demonstrate that Fr\'echet basis provides better semantic factorization and robustness compared to the previous methods. Moreover, we suggest the basis refinement scheme for the previous methods. The quantitative experiments show that the refined basis achieves better semantic factorization while constrained on the same semantic subspace given by the previous method.Comment: 25 pages, 21 figure

    HandNeRF: Learning to Reconstruct Hand-Object Interaction Scene from a Single RGB Image

    Full text link
    This paper presents a method to learn hand-object interaction prior for reconstructing a 3D hand-object scene from a single RGB image. The inference as well as training-data generation for 3D hand-object scene reconstruction is challenging due to the depth ambiguity of a single image and occlusions by the hand and object. We turn this challenge into an opportunity by utilizing the hand shape to constrain the possible relative configuration of the hand and object geometry. We design a generalizable implicit function, HandNeRF, that explicitly encodes the correlation of the 3D hand shape features and 2D object features to predict the hand and object scene geometry. With experiments on real-world datasets, we show that HandNeRF is able to reconstruct hand-object scenes of novel grasp configurations more accurately than comparable methods. Moreover, we demonstrate that object reconstruction from HandNeRF ensures more accurate execution of a downstream task, such as grasping for robotic hand-over.Comment: 9 pages, 4 tables, 7 figure

    Protocadherin-7 contributes to maintenance of bone homeostasis through regulation of osteoclast multinucleation

    Get PDF
    Kim, H., Takegahara, N., Walsh, M. C., Ueda, J., Fujihara, Y., Ikawa, M., & Choi, Y. (2020). Protocadherin-7 contributes to maintenance of bone homeostasis through regulation of osteoclast multinucleation. BMB Reports, 53(9), 472-477. doi:10.5483/BMBRep.2020.53.9.05
    • …
    corecore