119 research outputs found
Long-term outcome among men with conservatively treated localised prostate cancer
Optimal management of clinically localised prostate cancer presents unique challenges, because of its highly variable and often indolent natural history. There is an urgent need to predict more accurately its natural history, in order to avoid unnecessary treatment. Medical records of men diagnosed with clinically localised prostate cancer, in the UK, between 1990 and 1996 were reviewed to identify those who were conservatively treated, under age 76 years at the time of pathological diagnosis and had a baseline prostate-specific antigen (PSA) measurement. Diagnostic biopsy specimens were centrally reviewed to assign primary and secondary Gleason grades. The primary end point was death from prostate cancer and multivariate models were constructed to determine its best predictors. A total of 2333 eligible patients were identified. The most important prognostic factors were Gleason score and baseline PSA level. These factors were largely independent and together, contributed substantially more predictive power than either one alone. Clinical stage and extent of disease determined, either from needle biopsy or transurethral resection of the prostate (TURP) chips, provided some additional prognostic information. In conclusion, a model using Gleason score and PSA level identified three subgroups comprising 17, 50, and 33% of the cohort with a 10-year prostate cancer specific mortality of <10, 10â30, and >30%, respectively. This classification is a substantial improvement on previous ones using only Gleason score, but better markers are needed to predict survival more accurately in the intermediate group of patients
Recommended from our members
Gut microbiota functions: metabolism of nutrients and other food components
The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays
- âŠ