29 research outputs found

    Colour by number

    No full text

    Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models

    No full text
    Circulating tumor cells (CTCs) seed cancer metastases; however, the underlying cellular and molecular mechanisms remain unclear. CTC clusters were less frequently detected but more metastatic than single CTCs of triple negative breast cancer patients and representative patient-derived-xenograft (PDX) models. Using intravital multiphoton microscopic imaging, we found that clustered tumor cells in migration and circulation resulted from aggregation of individual tumor cells rather than collective migration and cohesive shedding. Aggregated tumor cells exhibited enriched expression of the breast cancer stem cell marker CD44 and promoted tumorigenesis and polyclonal metastasis. Depletion of CD44 effectively prevented tumor cell aggregation and decreased PAK2 levels. The intercellular CD44-CD44 homophilic interactions directed multicellular aggregation, requiring its N-terminal domain, and initiated CD44-PAK2 interactions for further activation of FAK signaling. Our studies highlight that CD44+ CTC clusters, whose presence is correlated with a poor prognosis of breast cancer patients, can serve as novel therapeutic targets of polyclonal metastasis

    Generalized bacterial genome editing using mobile group II introns and Cre‐ lox

    No full text
    Efficient bacterial genetic engineering approaches with broad-host applicability are rare. We combine two systems, mobile group II introns (‘targetrons') and Cre/lox, which function efficiently in many different organisms, into a versatile platform we call GETR (Genome Editing via Targetrons and Recombinases). The introns deliver lox sites to specific genomic loci, enabling genomic manipulations. Efficiency is enhanced by adding flexibility to the RNA hairpins formed by the lox sites. We use the system for insertions, deletions, inversions, and one-step cut-and-paste operations. We demonstrate insertion of a 12-kb polyketide synthase operon into the lacZ gene of Escherichia coli, multiple simultaneous and sequential deletions of up to 120 kb in E. coli and Staphylococcus aureus, inversions of up to 1.2 Mb in E. coli and Bacillus subtilis, and one-step cut-and-pastes for translocating 120 kb of genomic sequence to a site 1.5 Mb away. We also demonstrate the simultaneous delivery of lox sites into multiple loci in the Shewanella oneidensis genome. No selectable markers need to be placed in the genome, and the efficiency of Cre-mediated manipulations typically approaches 100%
    corecore