186 research outputs found

    Cathodo- and radioluminescence of Tm3+^{3+}:YAG and Nd3+^{3+}:YAG in an extended wavelength range

    Get PDF
    We have studied the cathodo- and radioluminescence of Nd:YAG and of Tm:YAG single crystals in an extended wavelength range up to ≈5 μ\approx 5\,\mum in view of developing a new kind of detector for low-energy, low-rate energy deposition events. Whereas the light yield in the visible range is as large as ≈104 \approx 10^{4}\,photons/MeV, in good agreement with literature results, in the infrared range we have found a light yield ≈5×104 \approx 5\times 10^{4}\,photons/MeV, thereby proving that ionizing radiation is particularly efficient in populating the low lying levels of rare earth doped crystals.Comment: submitted for publication in Journal of Luminescenc

    A new technique for infrared scintillation measurements

    Get PDF
    We propose a new technique to measure the infrared scintillation light yield of rare earth (RE) doped crystals by comparing it to near UV-visible scintillation of a calibrated Pr:(Lu0.75_{0.75}Y0.25_{0.25})3_{3}Al5_5O12_{12} sample. As an example, we apply this technique to provide the light yield in visible and infrared range up to \SI{1700}{nm} of this crystal.Comment: submitted to NIM

    Supersymmetric AdS(4) compactifications of IIA supergravity

    Full text link
    We derive necessary and sufficient conditions for N=1 compactifications of (massive) IIA supergravity to AdS(4) in the language of SU(3) structures. We find new solutions characterized by constant dilaton and nonzero fluxes for all form fields. All fluxes are given in terms of the geometrical data of the internal compact space. The latter is constrained to belong to a special class of half-flat manifolds.Comment: 24 pages, references adde

    A model realisation of the Jaffe-Wilczek correlation for pentaquarks

    Full text link
    We discuss a realisation of the pentaquark structure proposed by Jaffe and Wilczek within a simple quark model with colour-spin contact interactions and coloured harmonic confinement, which accurately describes the Δ−N\Delta-N splitting. In this model spatially compact diquarks are formed in the pentaquark but no such compact object exists in the nucleon. The colour-spin attraction brings the Jaffe-Wilczek-like state down to a low mass, compatible with the experimental observation and below that of the naive ground state with all SS-waves. We find, however, that although these trends are maintained, the extreme effects observed do not survive the required ``smearing'' of the delta function contact interaction. We also demonstrate the weakness of the ``schematic'' approximation when applied to a system containing a PP-wave. An estimate of the anti-charmed pentaquark mass is made which is in line with the Jaffe-Wilczek prediction and significantly less than the value reported by the H1 collaboration.Comment: 10 pages, uses psfra

    Laser induced fluorescence for axion dark matter detection: a feasibility study in YLiF4_4:Er3+^{3+}

    Get PDF
    We present a detection scheme to search for QCD axion dark matter, that is based on a direct interaction between axions and electrons explicitly predicted by DFSZ axion models. The local axion dark matter field shall drive transitions between Zeeman-split atomic levels separated by the axion rest mass energy mac2m_a c^2. Axion-related excitations are then detected with an upconversion scheme involving a pump laser that converts the absorbed axion energy (∼\sim hundreds of μ\mueV) to visible or infrared photons, where single photon detection is an established technique. The proposed scheme involves rare-earth ions doped into solid-state crystalline materials, and the optical transitions take place between energy levels of 4fN4f^N electron configuration. Beyond discussing theoretical aspects and requirements to achieve a cosmologically relevant sensitivity, especially in terms of spectroscopic material properties, we experimentally investigate backgrounds due to the pump laser at temperatures in the range 1.9−4.21.9-4.2 K. Our results rule out excitation of the upper Zeeman component of the ground state by laser-related heating effects, and are of some help in optimizing activated material parameters to suppress the multiphonon-assisted Stokes fluorescence.Comment: 8 pages, 5 figure

    Kaluza-Klein bundles and manifolds of exceptional holonomy

    Get PDF
    We show how in the presence of RR two-form field strength the conditions for preserving supersymmetry on six- and seven-dimensional manifolds lead to certain generalizations of monopole equations. For six dimensions the string frame metric is Kaehler with the complex structure that descends from the octonions if in addition we assume F^{(1,1)}=0. The susy generator is a gauge covariantly constant spinor. For seven dimensions the string frame metric is conformal to a G_2 metric if in addition we assume the field strength to obey a selfduality constraint. Solutions to these equations lift to geometries of G_2 and Spin(7) holonomy respectively.Comment: LaTeX, 13 page

    AdS Strings with Torsion: Non-complex Heterotic Compactifications

    Get PDF
    Combining the effects of fluxes and gaugino condensation in heterotic supergravity, we use a ten-dimensional approach to find a new class of four-dimensional supersymmetric AdS compactifications on almost-Hermitian manifolds of SU(3) structure. Computation of the torsion allows a classification of the internal geometry, which for a particular combination of fluxes and condensate, is nearly Kahler. We argue that all moduli are fixed, and we show that the Kahler potential and superpotential proposed in the literature yield the correct AdS radius. In the nearly Kahler case, we are able to solve the H Bianchi using a nonstandard embedding. Finally, we point out subtleties in deriving the effective superpotential and understanding the heterotic supergravity in the presence of a gaugino condensate.Comment: 42 pages; v2. added refs, revised discussion of Bianchi for N

    Particle detection through the quantum counter concept in YAG:Er3+^{3+}

    Get PDF
    We report about a novel scheme for particle detection based on the infrared quantum counter concept. Its operation consists of a two-step excitation process of a four level system, that can be realized in rare earth-doped crystals when a cw pump laser is tuned to the transition from the second to the fourth level. The incident particle raises the atoms of the active material into a low lying, metastable energy state, triggering the absorption of the pump laser to a higher level. Following a rapid non-radiative decay to a fluorescent level, an optical signal is observed with a conventional detectors. In order to demonstrate the feasibility of such a scheme, we have investigated the emission from the fluorescent level 4^4S3/2_{3/2} (540 nm band) in an Er3+^{3+}-doped YAG crystal pumped by a tunable titanium sapphire laser when it is irradiated with 60 keV electrons delivered by an electron gun. We have obtained a clear signature this excitation increases the 4I13/2^{4}I_{13/2} metastable level population that can efficiently be exploited to generate a detectable optical signal

    Complete Calabi-Yau metrics from Kahler metrics in D=4

    Full text link
    In the present work the local form of certain Calabi-Yau metrics possessing a local Hamiltonian Killing vector is described in terms of a single non linear equation. The main assumptions are that the complex (3,0)(3,0)-form is of the form eikΨ~e^{ik}\widetilde{\Psi}, where Ψ~\widetilde{\Psi} is preserved by the Killing vector, and that the space of the orbits of the Killing vector is, for fixed value of the momentum map coordinate, a complex 4-manifold, in such a way that the complex structure of the 4-manifold is part of the complex structure of the complex 3-fold. The link with the solution generating techniques of [26]-[28] is made explicit and in particular an example with holonomy exactly SU(3) is found by use of the linearization of [26], which was found in the context of D6 branes wrapping a holomorphic 1-fold in a hyperkahler manifold. But the main improvement of the present method, unlike the ones presented in [26]-[28], does not rely in an initial hyperkahler structure. Additionally the complications when dealing with non linear operators over the curved hyperkahler space are avoided by use of this method.Comment: Version accepted for publication in Phys.Rev.
    • …
    corecore