42 research outputs found
Clinical implication of HLA class I expression in breast cancer
<p>Abstract</p> <p>Background</p> <p>Human leukocyte antigen (HLA)-class I molecules on tumor cells have been regarded as crucial sites where cytotoxic T lymphocytes (CTL) can recognize tumor-specific antigens and are strongly associated with anti-tumor activity. However, the clinical impact of HLA class I expression in breast cancer has not been clarified.</p> <p>Methods</p> <p>A total of 212 breast cancer patients who received curative surgery from 1993 to 2003 were enrolled in the current study. HLA class I expression was examined immunohistochemically using an anti-HLA class I monoclonal antibody. The correlation between HLA class I positivity and clinical factors was analyzed.</p> <p>Results</p> <p>The downregulation of HLA class I expression in breast cancer was observed in 69 patients (32.5%). HLA class I downregulation was significantly associated with nodal involvement (p < 0.05), TNM stage (p < 0.05), lymphatic invasion (p < 0.01), and venous invasion (p < 0.05). Patients with preserved HLA class I had significantly better disease-free interval (DFI) than those with loss of HLA class I (p < 0.05). However, in multivariable analysis, HLA class I was not selected as one of the independent prognostic factors of disease-free interval.</p> <p>Conclusion</p> <p>The examination of HLA class I expression is useful for the prediction of tumor progression and recurrent risk of breast cancer via the antitumor immune system.</p
Improved survival of gastric cancer with tumour Epstein–Barr virus positivity: an international pooled analysis
About 9% of gastric carcinomas have Epstein–Barr virus (EBV) in the tumour cells, but it is unclear whether viral presence influences clinical progression. We therefore examined a large multicentre case series for the association of tumour EBV status with survival after gastric cancer diagnosis, accounting for surgical stage and other prognostic factors
High-triplet-energy bipolar host materials based on phosphine oxide derivatives for efficient sky-blue thermally activated delayed fluorescence organic light-emitting diodes with reduced roll-off
We designed and synthesized two new ambipolar host materials, namely CzPO and Cz3PO. Combining CzPO and Cz3PO with CzTRZ2 as the emitter resulted in improved maximum external quantum efficiencies of 13.1% and 13.2%, respectively, together with small efficiency roll-offs, while the device based on bis[2-(diphenylphosphino)phenyl]ether oxide (DPEPO) as host showed a much more pronounced efficiency roll-off