127 research outputs found

    The Role of Perfusion Computed Tomography in the Prediction of Cerebral Hyperperfusion Syndrome

    Get PDF
    Hyperperfusion syndrome (HPS) following carotid angioplasty with stenting (CAS) is associated with significant morbidity and mortality. At present, there are no reliable parameters to predict HPS. The aim of this study was to clarify whether perfusion computed tomography (CT) is a feasible and reliable tool in predicting HPS after CAS.We performed a retrospective case-control study of 54 patients (11 HPS patients and 43 non-HPS) with unilateral severe stenosis of the carotid artery who underwent CAS. We compared the prevalence of vascular risk factors and perfusion CT parameters including regional cerebral blood volume (rCBV), regional cerebral blood flow (rCBF), and time to peak (TTP) within seven days prior to CAS. Demographic information, risk factors for atherosclerosis, and perfusion CT parameters were evaluated by multivariable logistic regression analysis. The rCBV index was calculated as [(ipsilateral rCBV - contralateral rCBV)/contralateral rCBV], and indices of rCBF and TTP were similarly calculated. We found that eleven patients had HPS, including five with intracranial hemorrhages (ICHs) of whom three died. After a comparison with non-HPS control subjects, independent predictors of HPS included the severity of ipsilateral carotid artery stenosis, 3-hour mean systolic blood pressure (3 h SBP) after CAS, pre-stenting rCBV index >0.15 and TTP index >0.22.The combination of severe ipsilateral carotid stenosis, 3 h SBP after CAS, rCBV index and TTP index provides a potential screening tool for predicting HPS in patients with unilateral carotid stenosis receiving CAS. In addition, adequate management of post-stenting blood pressure is the most important treatable factor in preventing HPS in these high risk patients

    Apparatus and Method of Defect Detection for Resin Films

    No full text
    A defect inspection of resin films involves processes of detecting defects, size measuring, type classification and reflective action planning. It is not only a process requiring heavy investment in workforce, but also a tension between quality assurance with a 50-micrometer tolerance and visibility of the naked eye. To solve the difficulties of the workforce and time consumption processes of defect inspection, an apparatus is designed to collect high-quality images in one shot by leveraging a large field-of-view microscope at 2K resolution. Based on the image dataset, a two-step method is used to first locate possible defects and predict their types by a defect-shape-based deep learning model using the LeNet-5-adjusted network. The experimental results show that the proposed method can precisely locate the position and accurately inspect the fine-grained defects of resin films

    Cerebroventricular Injection of Pgk1 Attenuates MPTP-Induced Neuronal Toxicity in Dopaminergic Cells in Zebrafish Brain in a Glycolysis-Independent Manner

    No full text
    Parkinson’s disease (PD) is characterized by the degeneration of dopaminergic neurons. While extracellular Pgk1 (ePgk1) is reported to promote neurite outgrowth, it remains unclear if it can affect the survival of dopaminergic cells. To address this, we employed cerebroventricular microinjection (CVMI) to deliver Pgk1 into the brain of larvae and adult zebrafish treated with methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as a PD-like model. The number of dopamine-producing cells in ventral diencephalon clusters of Pgk1-injected, MPTP-treated embryos increased over that of MPTP-treated embryos. Swimming distances of Pgk1-injected, MPTP-treated larvae and adult zebrafish were much longer compared to MPTP-treated samples. The effect of injected Pgk1 on both dopamine-producing cells and locomotion was time- and dose-dependent. Indeed, injected Pgk1 could be detected, located on dopamine neurons. When the glycolytic mutant Pgk1, Pgk1-T378P, was injected into the brain of MPTP-treated zebrafish groups, the protective ability of dopaminergic neurons did not differ from that of normal Pgk1. Therefore, ePgk1 is functionally independent from intracellular Pgk1 serving as an energy supplier. Furthermore, when Pgk1 was added to the culture medium for culturing dopamine-like SH-SY5Y cells, it could reduce the ROS pathway and apoptosis caused by the neurotoxin MPP+. These results show that ePgk1 benefits the survival of dopamine-producing cells and decreases neurotoxin damage

    Uncertainty Comparison of Visual Sensing in Adverse Weather Conditions

    No full text
    This paper focuses on flood-region detection using monitoring images. However, adverse weather affects the outcome of image segmentation methods. In this paper, we present an experimental comparison of an outdoor visual sensing system using region-growing methods with two different growing rulesβ€”namely, GrowCut and RegGro. For each growing rule, several tests on adverse weather and lens-stained scenes were performed, taking into account and analyzing different weather conditions with the outdoor visual sensing system. The influence of several weather conditions was analyzed, highlighting their effect on the outdoor visual sensing system with different growing rules. Furthermore, experimental errors and uncertainties obtained with the growing rules were compared. The segmentation accuracy of flood regions yielded by the GrowCut, RegGro, and hybrid methods was 75%, 85%, and 87.7%, respectively
    • …
    corecore