6,833 research outputs found

    Ferromagnetic to antiferromagnetic transition of one-dimensional spinor Bose gases with spin-orbit coupling

    Full text link
    We have analytically solved one-dimensional interacting two-component bosonic gases with spin-orbit (SO) coupling by the Bethe-ansatz method. Through a gauge transformation, the effect of SO coupling is incorporated into a spin-dependent twisted boundary condition. Our result shows that the SO coupling can influence the eigenenergy in a periodical pattern. The interplay between interaction and SO coupling may induce the energy level crossing for the ground state, which leads to a transition from the ferromagnetic to antiferromagnetic state.Comment: 6 pages, 4 figure

    Characterization of Lifshitz transitions in topological nodal line semimetals

    Full text link
    We introduce a two-band model of three-dimensional nodal line semimetals, the Fermi surface of which at half-filling may form various one-dimensional configurations of different topology. We study the symmetries and "drumhead" surface states of the model, and find that the transitions between different configurations, namely, the Lifshitz transitions, can be identified solely by the number of gap-closing points on some high-symmetry planes in the Brillouin zone. A global phase diagram of this model is also obtained accordingly. We then investigate the effect of some extra terms analogous to a two-dimensional Rashba-type spin-orbit coupling. The introduced extra terms open a gap for the nodal line semimetals and can be useful in engineering different topological insulating phases. We demonstrate that the behavior of surface Dirac cones in the resulting insulating system has a clear correspondence with the different configurations of the original nodal lines in the absence of the gap terms.Comment: 7 pages, 6 figure

    The Mid-Infrared Extinction Law and its Variation in the Coalsack Nebula

    Full text link
    In recent years the wavelength dependence of interstellar extinction from the ultraviolet (UV), optical, through the near- and mid-infrared (IR) has been studied extensively. Although it is well established that the UV/optical extinction law varies significantly among the different lines of sight, it is not clear how the IR extinction varies among various environments. In this work, using the color-excess method and taking red giants as the extinction tracer, we determine the interstellar extinction Alambda in the four Spitzer/IRAC bands of the Coalsack nebula, a nearby starless dark cloud, based on the data obtained from the 2MASS and Spitzer/GLIMPSE surveys. We select five individual regions across the nebula that span a wide variety of physical conditions, ranging from diffuse, translucent to dense environments, as traced by the visual extinction, the Spitzer/MIPS 24micron emission, and CO emission. We find that Alambda/AKs, the mid-IR extinction relative to AKs, decreases from diffuse to dense environments, which may be explained in terms of ineffective dust growth in dense regions. The mean extinction (relative to AKs) is calculated for the four IRAC bands as well, which exhibits a flat mid-IR extinction law, consistent with previous determinations for other regions. The extinction in the IRAC 4.5micron band is anomalously high, much higher than that of the other three IRAC bands. It cannot be explained in terms of CO and CO2 ices. The mid-IR extinction in the four IRAC bands have also been derived for four representative regions in the Coalsack Globule 2 which respectively exhibit strong ice absorption, moderate or weak ice absorption, and very weak or no ice absorption. The derived mid-IR extinction curves are all flat, with Alambda/AKs increasing with the decrease of the H2O ice absorption optical depth.Comment: 39 pages, 13 figures, accepted by Ap

    Distances to the Supernova Remnants in the Inner Disk

    Full text link
    Distance measurements of supernova remnants (SNRs) are essential and important. Accurate estimates of physical size, dust masses, and some other properties of SNRs depend critically on accurate distance measurements. However, the determination of SNR distances is still a tough task. Red clump stars (RCs) have a long history been used as standard candles. In this work, we take RCs as tracers to determine the distances to a large group of SNRs in the inner disk. We first select RC stars based on the near-infrared (IR) color-magnitude diagram (CMD). Then, the distance to and extinction of RC stars are calculated. To extend the measurable range of distance, we combine near-IR photometric data from the 2MASS survey with the deeper UKIDSS and VVV surveys. With the help of the Gaia parallaxes, we also remove contaminants including dwarfs and giants. Because an SN explosion compresses the surrounding interstellar medium, the SNR region would become denser and exhibit higher extinction than the surroundings. The distance of a SNR is then recognized by the position where the extinction and its gradient is higher than that of the ambient medium. A total of 63 SNRs' distances in the Galactic inner disk are determined and divided into three Levels A, B, and C with decreasing reliability. The distances to 43 SNRs are well determined with reliability A or B. The diameters and dust masses of SNRs are estimated with the obtained distance and extinction.Comment: 31 pages, 25 figures, 2 tables, accepted for publication in A&

    Topological invariants, zero mode edge states and finite size effect for a generalized non-reciprocal Su-Schrieffer-Heeger model

    Full text link
    Intriguing issues in one-dimensional non-reciprocal topological systems include the breakdown of usual bulk-edge correspondence and the occurrence of half-integer topological invariants. In order to understand these unusual topological properties, we investigate the topological phase diagrams and the zero-mode edge states of a generalized non-reciprocal Su-Schrieffer-Heeger model, based on some analytical results. Meanwhile, we provide a concise geometrical interpretation of the bulk topological invariants in terms of two independent winding numbers and also give an alternative interpretation related to the linking properties of curves in three-dimensional space. For the system under the open boundary condition, we construct analytically the wavefunctions of zero-mode edge states by properly considering a hidden symmetry of the system and the normalization condition with the use of biorthogonal eigenvectors. Our analytical results directly give the phase boundary for the existence of zero-mode edge states and unveil clearly the evolution behavior of edge states. In comparison with results via exact diagonalization of finite-size systems, we find our analytical results agree with the numerical results very well.Comment: 13 pages, 9 figure

    Solving time-dependent parametric PDEs by multiclass classification-based reduced order model

    Full text link
    In this paper, we propose a network model, the multiclass classification-based ROM (MC-ROM), for solving time-dependent parametric partial differential equations (PPDEs). This work is inspired by the observation of applying the deep learning-based reduced order model (DL-ROM) to solve diffusion-dominant PPDEs. We find that the DL-ROM has a good approximation for some special model parameters, but it cannot approximate the drastic changes of the solution as time evolves. Based on this fact, we classify the dataset according to the magnitude of the solutions, and construct corresponding subnets dependent on different types of data. Then we train a classifier to integrate different subnets together to obtain the MC-ROM. When subsets have the same architecture, we can use transfer learning technology to accelerate the offline training. Numerical experiments show that the MC-ROM improves the generalization ability of the DL-ROM both for diffusion- and convection-dominant problems, and maintains the advantage of DL-ROM. We also compare the approximation accuracy and computational efficiency of the proper orthogonal decomposition (POD) which is not suitable for convection-dominant problems. For diffusion-dominant problems, the MC-ROM can save about 100 times online computational cost than the POD with a slightly better approximation in the reduced space of the same dimension.Comment: 19 pages, 15 figure
    • …
    corecore