485 research outputs found
Avaliação preliminar de substrato padrão europeu de Biobed contra dois solos brasileiros na degradação de resÃduos pontuais de agrotóxicos.
Com o objetivo de encontrar alternativas no descarte de resÃduos da lavagem de tratores e pulverizadores para reduzir o dano ao ambiente, foram testados 19 reatores, sendo 8 com turfa + palha de trigo + solo agrÃcola (SPT), 4 com Latossolo puro e 4 com Nitossolo puro
A single cell but many different transcripts: A journey into the world of long non-coding RNAs
In late 2012 it was evidenced that most of the human genome is transcribed but only a small percentage of the transcripts are translated. This observation supported the importance of non-coding RNAs and it was confirmed in several organisms. The most abundant non-translated transcripts are long non-coding RNAs (lncRNAs). In contrast to protein-coding RNAs, they show a more cell-specific expression. To understand the function of lncRNAs, it is fundamental to investigate in which cells they are preferentially expressed and to detect their subcellular localization. Recent improvements of techniques that localize single RNA molecules in tissues like single-cell RNA sequencing and fluorescence amplification methods have given a considerable boost in the knowledge of the lncRNA functions. In recent years, single-cell transcription variability was associated with non-coding RNA expression, revealing this class of RNAs as important transcripts in the cell lineage specification. The purpose of this review is to collect updated information about lncRNA classification and new findings on their function derived from singlecell analysis. We also retained useful for all researchers to describe the methods available for singlecell analysis and the databases collecting single-cell and lncRNA data. Tables are included to schematize, describe, and compare exposed concepts
Single cell analysis reveals the involvement of the long non-coding RNA Pvt1 in the modulation of muscle atrophy and mitochondrial network
Long non-coding RNAs (lncRNAs) are emerging as important players in the regulation of several aspects of cellular biology. For a better comprehension of their function, it is fundamental to determine their tissue or cell specificity and to identify their subcellular localization. In fact, the activity of lncRNAs may vary according to cell and tissue specificity and subcellular compartmentalization. Myofibers are the smallest complete contractile system of skeletal muscle influencing its contraction velocity and metabolism. How lncRNAs are expressed in different myofibers, participate in metabolism regulation and muscle atrophy or how they are compartmentalized within a single myofiber is still unknown. We compiled a comprehensive catalog of lncRNAs expressed in skeletal muscle, associating the fiber-type specificity and subcellular location to each of them, and demonstrating that many lncRNAs can be involved in the biological processes de-regulated during muscle atrophy. We demonstrated that the lncRNA Pvt1, activated early during muscle atrophy, impacts mitochondrial respiration and morphology and affects mito/autophagy, apoptosis and myofiber size in vivo. This work corroborates the importance of lncRNAs in the regulation of metabolism and neuromuscular pathologies and offers a valuable resource to study the metabolism in single cells characterized by pronounced plasticity
Hermetia illucens larvae meal: evaluation of an alternative protein source in diet for rainbow trout
Effects of Tenebrio molitor larvae meal inclusion in rainbow trout feed: myogenesis-related gene expression and histomorphological features
The effects of Tenebrio molitor larvae meal (TM) dietary inclusion in rainbow trout diet were evaluated on muscular growth using gene expression and histomorphological features of liver, spleen, kidney, anterior and posterior gut through histopathological analyses. Two hundred fifty-two grow-out rainbow trout were fed four experimental diets containing increasing levels of TM: 0% (TM0), 5% (TM25), 10% (TM50), and 20% (TM100) corresponding to different levels of fish meal replacement (0, 25, 50, and 100%, respectively). Muscular growth was evaluated analysing the expression of various genes involved in different steps of myogenesis. Among the analysed genes, only MyoD expression resulted significantly higher in fish fed TM100 compared to fish fed TM0. The gut histomorphology was not affected by TM dietary inclusion and villus height differs from anterior and posterior segments regardless of the fed diet. Histopathological alterations were observed in all the sampled organs for all the dietary treatments; however, dietary TM inclusion did not influence either development or severity of the observed histopathological changes. The results obtained confirmed the safe utilisation of TM as an alternative protein source in rainbow trout diets and highlighted the necessity to deepen the studies of TM effect on the myogenesis process, especially at a molecular level.Highlights Rainbow trout can effectively be fed with a TM protein source. Total FM substitution by TM (TM100) decreased MyoD gene expression. Increasing TM dietary inclusion did not influence gut histomorphology
Global warming-related response after bacterial challenge in Astroides calycularis, a Mediterranean thermophilic coral
A worldwide increase in the prevalence of coral diseases and mortality has been linked to ocean warming due to changes in coral-associated bacterial communities, pathogen virulence, and immune system function. In the Mediterranean basin, the worrying upward temperature trend has already caused recurrent mass mortality events in recent decades. To evaluate how elevated seawater temperatures affect the immune response of a thermophilic coral species, colonies of Astroides calycularis were exposed to environmental (23 °C) or elevated (28 °C) temperatures, and subsequently challenged with bacterial lipopolysaccharides (LPS). Using immunolabeling with specific antibodies, we detected the production of Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-kB), molecules involved in coral immune responses, and heat shock protein 70 (HSP70) activity, involved in general responses to thermal stress. A histological approach allowed us to characterize the tissue sites of activation (epithelium and/or gastroderm) under different experimental conditions. The activity patterns of the examined markers after 6 h of LPS stimulation revealed an up-modulation at environmental temperature. Under warmer conditions plus LPS-challenge, TLR4-NF-kB activation was almost completely suppressed, while constituent elevated values were recorded under thermal stress only. An HSP70 up-regulation appeared in both treatments at elevated temperature, with a significantly higher activation in LPS-challenge colonies. Such an approach is useful for further understanding the molecular pathogen-defense mechanisms in corals in order to disentangle the complex interactive effects on the health of these ecologically relevant organisms related to global climate change
Dysfunctional mitochondria accumulate in a skeletal muscle knockout model of Smn1, the causal gene of spinal muscular atrophy
The approved gene therapies for spinal muscular atrophy (SMA), caused by loss of survival motor neuron 1 (SMN1), greatly ameliorate SMA natural history but are not curative. These therapies primarily target motor neurons, but SMN1 loss has detrimental effects beyond motor neurons and especially in muscle. Here we show that SMN loss in mouse skeletal muscle leads to accumulation of dysfunctional mitochondria. Expression profiling of single myofibers from a muscle specific Smn1 knockout mouse model revealed down-regulation of mitochondrial and lysosomal genes. Albeit levels of proteins that mark mitochondria for mitophagy were increased, morphologically deranged mitochondria with impaired complex I and IV activity and respiration and that produced excess reactive oxygen species accumulated in Smn1 knockout muscles, because of the lysosomal dysfunction highlighted by the transcriptional profiling. Amniotic fluid stem cells transplantation that corrects the SMN knockout mouse myopathic phenotype restored mitochondrial morphology and expression of mitochondrial genes. Thus, targeting muscle mitochondrial dysfunction in SMA may complement the current gene therapy
- …