10,372 research outputs found

    Unification of SU(2)xU(1) Using a Generalized Covariant Derivative and U(3)

    Get PDF
    A generalization of the Yang-Mills covariant derivative, that uses both vector and scalar fields and transforms as a 4-vector contracted with Dirac matrices, is used to simplify and unify the Glashow-Weinberg-Salam model. Since SU(3) assigns the wrong hypercharge to the Higgs boson, it is necessary to use a special representation of U(3) to obtain all the correct quantum numbers. A surplus gauge scalar boson emerges in the process, but it uncouples from all other particles.Comment: 12 pages, no figures. To be published in Int. J. Mod. Phys.

    The split-operator technique for the study of spinorial wavepacket dynamics

    Full text link
    The split-operator technique for wave packet propagation in quantum systems is expanded here to the case of propagating wave functions describing Schr\"odinger particles, namely, charge carriers in semiconductor nanostructures within the effective mass approximation, in the presence of Zeeman effect, as well as of Rashba and Dresselhaus spin-orbit interactions. We also demonstrate that simple modifications to the expanded technique allow us to calculate the time evolution of wave packets describing Dirac particles, which are relevant for the study of transport properties in graphene.Comment: 19 pages, 4 figure

    Theoretical investigation of electron-hole complexes in anisotropic two-dimensional materials

    Full text link
    Trions and biexcitons in anisotropic two-dimensional materials are investigated within an effective mass theory. Explicit results are obtained for phosphorene and arsenene, materials that share features such as a direct quasi-particle gap and anisotropic conduction and valence bands. Trions are predicted to have remarkably high binding energies and an elongated electron-hole structure with a preference for alignment along the armchair direction, where the effective masses are lower. We find that biexciton binding energies are also notably large, especially for monolayer phosphorene, where they are found to be twice as large as those for typical monolayer transition metal dichalcogenides.Comment: 3 figures, 5 pages + Supplementary Material, accepted for publication in Phys. Rev.
    corecore