6,521 research outputs found
Pseudogap and the specific heat of high superconductors
The specific heat of a two dimensional repulsive Hubbard model with local
interaction is investigated. We use the two-pole approximation which exhibits
explicitly important correlations that are sources of the pseudogap anomaly.
The interplay between the specific heat and the pseudogap is the main focus of
the present work. Our self consistent numerical results show that above the
occupation , the specific heat starts to decrease due to the
presence of a pseudogap in the density of states. We have also observed a two
peak structure in the specific heat. Such structure is robust with respect to
the Coulomb interaction but it is significantly affected by the occupation
. A detailed study of the two peak structure is carried out in terms of
the renormalized quasi-particle bands. The role of the second nearest neighbor
hopping on the specific heat behavior and on the pseudogap, is extensively
discussed.Comment: 6 pages, 6 figures, accepted for publication in Solid State
Communication
Electric and magnetic fields effects on the excitonic properties of elliptic core-multishell quantum wires
The effect of eccentricity distortions of core-multishell quantum wires on
their electron, hole and exciton states is theoretically investigated. Within
the effective mass approximation, the Schrodinger equation is numerically
solved for electrons and holes in systems with single and double radial
heterostructures, and the exciton binding energy is calculated by means of a
variational approach. We show that the energy spectrum of a core-multishell
heterostructure with eccentricity distortions, as well as its magnetic field
dependence, are very sensitive to the direction of an externally applied
electric field, an effect that can be used to identify the eccentricity of the
system. For a double heterostructure, the eccentricities of the inner and outer
shells play an important role on the excitonic binding energy, specially in the
presence of external magnetic fields, and lead to drastic modifications in the
oscillator strength.Comment: 17 pages, 10 figure
Topological confinement in graphene bilayer quantum rings
We demonstrate the existence of localized electron and hole states in a
ring-shaped potential kink in biased bilayer graphene. Within the continuum
description, we show that for sharp potential steps the Dirac equation
describing carrier states close to the K (or K') point of the first Brillouin
zone can be solved analytically for a circular kink/anti-kink dot. The
solutions exhibit interfacial states which exhibit Aharonov-Bohm oscillations
as functions of the height of the potential step and/or the radius of the ring
Specific heat of a non-local attractive Hubbard model
The specific heat of an attractive (interaction ) non-local Hubbard
model is investigated. We use a two-pole approximation which leads to a set of
correlation functions. In particular, the correlation function $\
G\delta\delta=1-n_Tn_T=n_{\uparrow}+n_{\downarrow}(0,\pm\pi)(\pm\pi,0)$ eliminates the two peak structure, the low
temperature peak remaining. The effects of the second nearest neighbor hopping
on the specific heat are also investigated.Comment: 5 pages, 7 figure
Simplified model for the energy levels of quantum rings in single layer and bilayer graphene
Within a minimal model, we present analytical expressions for the eigenstates
and eigenvalues of carriers confined in quantum rings in monolayer and bilayer
graphene. The calculations were performed in the context of the continuum
model, by solving the Dirac equation for a zero width ring geometry, i.e. by
freezing out the carrier radial motion. We include the effect of an external
magnetic field and show the appearance of Aharonov-Bohm oscillations and of a
non-zero gap in the spectrum. Our minimal model gives insight in the energy
spectrum of graphene-based quantum rings and models different aspects of finite
width rings.Comment: To appear in Phys. Rev.
- …