6 research outputs found

    Review on Sampling Methods and Health Impacts of Fine (PM₂.₅, ≤2.5 µm) and Ultrafine (UFP, PM₀.₁, ≤0.1 µm) Particles

    Get PDF
    Airborne particulate matter (PM) is of great concern in the modern-day atmosphere owing to its association with a variety of health impacts, such as respiratory and cardiovascular diseases. Of the various size fractions of PM, it is the finer fractions that are most harmful to health, in particular ultrafine particles (PM₀.₁; UFPs), with an aerodynamic diameter ≤ 100 nm. The smaller size fractions, of ≤2.5 µm (PM₂.₅; fine particles) and ≤0.1 µm (PM₀.₁; ultrafine particles), have been shown to have numerous linkages to negative health effects; however, their collection/sampling remains challenging. This review paper employed a comprehensive literature review methodology; 200 studies were evaluated based on the rigor of their methodologies, including the validity of experimental designs, data collection methods, and statistical analyses. Studies with robust methodologies were prioritised for inclusion. This review paper critically assesses the health risks associated with fine and ultrafine particles, highlighting vehicular emissions as the most significant source of particulate-related health effects. While coal combustion, diesel exhaust, household wood combustors’ emissions, and Earth’s crust dust also pose health risks, evidence suggests that exposure to particulates from vehicular emissions has the greatest impact on human health due to their widespread distribution and contribution to air pollution-related diseases. This article comprehensively examines current sampling technologies, specifically focusing on the collection and sampling of ultrafine particles (UFP) from ambient air to facilitate toxicological and physiochemical characterisation efforts. This article discusses diverse approaches to collect fine and ultrafine particulates, along with experimental endeavours to assess ultrafine particle concentrations across various microenvironments. Following meticulous evaluation of sampling techniques, high-volume air samplers such as the Chem Vol Model 2400 High Volume Cascade Impactor and low-volume samplers like the Personal Cascade Impactor Sampler (PCIS) emerge as effective methods. These techniques offer advantages in particle size fractionation, collection efficiency, and adaptability to different sampling environments, positioning them as valuable tools for precise characterisation of particulate matter in air quality research and environmental monitoring

    Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat.

    Get PDF
    Cellular totipotency is one of the basic principles of plant biotechnology. Currently, the success of the procedure used to produce transgenic plants is directly proportional to the successful insertion of foreign DNA into the genome of suitable target tissue/cells that are able to regenerate plants. The mature embryo (ME) is increasingly recognized as a valuable explant for developing regenerable cell lines in wheat biotechnology. We have previously developed a regeneration procedure based on fragmented ME in vitro culture. Before we can use this regeneration system as a model for molecular studies of the morphogenic pathway induced in vitro and investigate the functional links between regenerative capacity and transformation receptiveness, some questions need to be answered. Plant regeneration from cultured tissues is genetically controlled. Factors such as age/degree of differentiation and physiological conditions affect the response of explants to culture conditions. Plant regeneration in culture can be achieved through embryogenesis or organogenesis. In this paper, the suitability of ME tissues for tissue culture and the chronological series of morphological data observed at the macroscopic level are documented. Genetic variability at each step of the regeneration process was evaluated through a varietal comparison of several elite wheat cultivars. A detailed histological analysis of the chronological sequence of morphological events during ontogeny was conducted. Compared with cultures of immature zygotic embryos, we found that the embryogenic pathway occurs slightly earlier and is of a different origin in our model. Cytological, physiological, and some biochemical aspects of somatic embryo formation in wheat ME culture are discussed
    corecore