182 research outputs found

    WMAP constraint on the P-term inflationary model

    Full text link
    In light of WMAP results, we examine the observational constraint on the P-term inflation. With the tunable parameter ff, P-term inflation contains richer physics than D-term and F-term inflationary models. We find the logarithmic derivative spectral index with n>1n>1 on large scales and n<1n<1 on small scales in agreement to observation. We obtained a reasonable range for the choice of the gauge coupling constant gg in order to meet the requirements of WMAP observation and the expected number of the e-foldings. Although tuning ff and gg we can have larger values for the logarithmic derivative of the spectral index, it is not possible to satisfy all observational requirements for both, the spectral index and its logarithmic derivative at the same time.Comment: 6 pages, double column, 13 figures included. Version appearing in the Physical Review

    Probing mSUGRA via the Extreme Universe Space Observatory

    Full text link
    An analysis is carried out within mSUGRA of the estimated number of events originating from upward moving ultra-high energy neutralinos that could be detected by the Extreme Universe Space Observatory (EUSO). The analysis exploits a recently proposed technique that differentiates ultra-high energy neutralinos from ultra-high energy neutrinos using their different absorption lengths in the Earth's crust. It is shown that for a significant part of the parameter space, where the neutralino is mostly a Bino and with squark mass 1\sim 1 TeV, EUSO could see ultra-high energy neutralino events with essentially no background. In the energy range 10^9 GeV < E < 10^11 GeV, the unprecedented aperture of EUSO makes the telescope sensitive to neutralino fluxes as low as 1.1 \times 10^{-6} (E/GeV)^{-1.3} GeV^{-1} cm^{-2} yr^{-1} sr^{-1}, at the 95% CL. Such a hard spectrum is characteristic of supermassive particles' NN-body hadronic decay. The case in which the flux of ultra-high energy neutralinos is produced via decay of metastable heavy particles with uniform distribution throughout the universe is analyzed in detail. The normalization of the ratio of the relics' density to their lifetime has been fixed so that the baryon flux produced in the supermassive particle decays contributes to about 1/3 of the events reported by the AGASA Collaboration below 10^{11} GeV, and hence the associated GeV gamma-ray flux is in complete agreement with EGRET data. For this particular case, EUSO will collect between 4 and 5 neutralino events (with 0.3 of background) in ~ 3 yr of running. NASA's planned mission, the Orbiting Wide-angle Light-collectors (OWL), is also briefly discussed in this context.Comment: Some discussion added, final version to be published in Physical Review

    Thermodynamics of Modified Chaplygin Gas and Tachyonic Field

    Full text link
    Here we generalize the results of the work of ref. [10] in modified Chaplygin gas model and tachyonic field model. Here we have studied the thermodynamical behaviour and the equation of state in terms of volume and temperature for both models. We have used the solution and the corresponding equation of state of our previous work [12] for tachyonic field model. We have also studied the thermodynamical stability using thermal equation of state for the tachyonic field model and have shown that there is no critical points during thermodynamical expansion. The determination of TT_{*} due to expansion for the tachyonic field have been discussed by assuming some initial conditions. Here, the thermal quantities have been investigated using some reduced parameters.Comment: 10 page

    Higher Dimensional Cosmology with Some Dark Energy Models in Emergent, Logamediate and Intermediate Scenarios of the Universe

    Full text link
    We have considered N-dimensional Einstein field equations in which four-dimensional space-time is described by a FRW metric and that of extra dimensions by an Euclidean metric. We have chosen the exponential forms of scale factors a and d numbers of b in such a way that there is no singularity for evolution of the higher dimensional Universe. We have supposed that the Universe is filled with K-essence, Tachyonic, Normal Scalar Field and DBI-essence. Here we have found the nature of potential of different scalar field and graphically analyzed the potentials and the fields for three scenario namely Emergent Scenario, Logamediate Scenario and Intermediate Scenario. Also graphically we have depicted the geometrical parameters named statefinder parameters and slow-roll parameters in the higher dimensional cosmology with the above mentioned scenarios.Comment: 21 pages, 36 figure

    Focus Point SUSY at the LHC Revisited

    Full text link
    The estimation of the backgrounds for gluino signals in focus point supersymmetry is extended by including the backgrounds from the production of four third generation quarks in the analysis. We find that these backgrounds are negligible if one uses the strong selection criteria proposed in the literature (including this analysis) for heavy gluino searches. Softer selection criteria often recommended for lighter gluino searches yield backgrounds which are small but numerically significant. We have also repeated the more conventional background calculations and compared our results with the other groups. We find that the size of the total residual background estimated by different groups using different event generators and hard kinematical cuts agree approximately. In view of the theoretical uncertainties in the leading order signal and background cross sections mainly due to the choice of the QCD scale, the gluino mass reach at the LHC cannot be pinpointed. However, requiring a signal with 3\rm\geq 3 tagged b-jets (instead of the standard choice of 2\rm\geq 2) it is shown that gluino masses close to 2 TeV can be probed at the LHC for a range of reasonable choices of the QCD scale for an integrated luminosity of 300 fb1^{-1}.Comment: 17 pages, 4 figures, minor typos correctio

    Lepton Flavour Violation in a Class of Lopsided SO(10) Models

    Full text link
    A class of predictive SO(10) grand unified theories with highly asymmetric mass matrices, known as lopsided textures, has been developed to accommodate the observed mixing in the neutrino sector. The model class effectively determines the rate for charged lepton flavour violation, and in particular the branching ratio for μ>eγ\mu -> e \gamma, assuming that the supersymmetric GUT breaks directly to the constrained minimal supersymmetric standard model (CMSSM). We find that in light of the combined constraints on the CMSSM parameters from direct searches and from the WMAP satellite observations, the resulting predicted rate for μ>eγ\mu -> e \gamma in this model class can be within the current experimental bounds for low tanβ\tan \beta, but that the next generation of μ>eγ\mu -> e \gamma experiments would effectively rule out this model class if LFV is not detected.Comment: 23 page

    Generalized Ricci dark energy in Horava-Lifshitz gravity

    Full text link
    In this letter, we have considered generalized Ricci dark energy in the Horava-Lifshitz gravity. We have reconstructed the Hubble's parameter in terms of fractional densities. We have viewed the equation of state parameter in this situation. Also, we have examined the behavior of deceleration parameter and investigated the nature of the statefinder diagnostics. The equation of state parameter has exhibited quintessence-like behavior and from the plot of the deceleration parameter we have observed an ever accelerating universe

    Statefinder and Om Diagnostics for Interacting New Holographic Dark Energy Model and Generalized Second Law of Thermodynamics

    Full text link
    In this work, we have considered that the flat FRW universe is filled with the mixture of dark matter and the new holographic dark energy. If there is an interaction, we have investigated the natures of deceleration parameter, statefinder and OmOm diagnostics. We have examined the validity of the first and generalized second laws of thermodynamics under these interactions on the event as well as apparent horizon. It has been observed that the first law is violated on the event horizon. However, the generalized second law is valid throughout the evolution of the universe enveloped by the apparent horizon. When the event horizon is considered as the enveloping horizon, the generalized second law is found to break down excepting at late stage of the universe.Comment: 9 pages, 13 figure

    Leptogenesis and dark matter unified in a non-SUSY model for neutrino masses

    Full text link
    We propose a unified explanation for the origin of dark matter and baryon number asymmetry on the basis of a non-supersymmetric model for neutrino masses. Neutrino masses are generated in two distinct ways, that is, a tree-level seesaw mechanism with a single right-handed neutrino, and one-loop radiative effects by a new additional doublet scalar. A spontaneously broken U(1)^\prime brings a Z2Z_2 symmetry which restricts couplings of this new scalar and controls the neutrino masses. It also guarantees the stability of a CDM candidate. We examine two possible candidate for the CDM. We also show that the decay of a heavy right-handed neutrino related to the seesaw mechanism can generate baryon number asymmetry through leptogenesis.Comment: 21 pages, 3 figures, extended version for publication, references adde

    Lower limit on the neutralino mass in the general MSSM

    Full text link
    We discuss constraints on SUSY models with non-unified gaugino masses and R_P conservation. We derive a lower bound on the neutralino mass combining the direct limits from LEP, the indirect limits from gmuon, bsgamma, Bsmumu and the relic density constraint from WMAP. The lightest neutralino (mneutralino=6GeV) is found in models with a light pseudoscalar with MA<200GeV and a large value for tanβtan\beta. Models with heavy pseudoscalars lead to mneutralino>18(29)GeV for tanβ=50(10)\tan\beta=50(10). We show that even a very conservative bound from the muon anomalous magnetic moment can increase the lower bound on the neutralino mass in models with mu<0 and/or large values of tanβ\tan\beta. We then examine the potential of the Tevatron and the direct detection experiments to probe the SUSY models with the lightest neutralinos allowed in the context of light pseudoscalars with high tanβ\tan\beta. We also examine the potential of an e+e- collider of 500GeV to produce SUSY particles in all models with neutralinos lighter than the W. In contrast to the mSUGRA models, observation of at least one sparticle is not always guaranteed.Comment: 37 pages, LateX, 16 figures, paper with higher resolution figures available at http://wwwlapp.in2p3.fr/~boudjema/papers/bound-lsp/bound-lsp.htm
    corecore