10,333 research outputs found

    Statistical Evidence for Three classes of Gamma-ray Bursts

    Full text link
    Two different multivariate clustering techniques, the K-means partitioning method and the Dirichlet process of mixture modeling, have been applied to the BATSE Gamma-ray burst (GRB) catalog, to obtain the optimum number of coherent groups. In the standard paradigm, GRB are classified in only two groups, the long and short bursts. However, for both the clustering techniques, the optimal number of classes was found to be three, a result which is consistent with previous statistical analysis. In this classification, the long bursts are further divided into two groups which are primarily differentiated by their total fluence and duration and hence are named low and high fluence GRB. Analysis of GRB with known red-shifts and spectral parameters suggests that low fluence GRB have nearly constant isotropic energy output of 10^{52} ergs while for the high fluence ones, the energy output ranges from 10^{52} to 10^{54} ergs. It is speculated that the three kinds of GRBs reflect three different origins: mergers of neutron star systems, mergers between white dwarfs and neutron stars, and collapse of massive stars.Comment: 7 pages, accepted for publication in the Astrophysical Journal. Minor editorial change

    Contrasting the magnetic response between magnetic-glass and reentrant spin-glass

    Full text link
    Magnetic-glass is a recently identified phenomenon in various classes of magnetic systems undergoing a first order magnetic phase transition. We shall highlight here a few experimentally determined characteristics of magnetic-glass and the relevant set of experiments, which will enable to distinguish a magnetic-glass unequivocally from the well known phenomena of spin-glass and reentrant spin-glass.Comment: 10 pages and 4 figures. The preprint has been amended after taking care of various typographical errors, some errors in Figs.2 and 4 and with the addition of some new references. This version has been accepted for publication in Physical Review

    Fluctuation Effects And Order Parameter Symmetry In The Cuprate Superconductors

    Full text link
    Effect of phase fluctuations on superconducting states with anisotropic order parameters is studied in a BCS like lattice model of cuprate superconductors. The degradation of the mean field transition temperature due to phase fluctuations is estimated within a Kosterlitz-Thouless scenario. Values of the interaction parameters for optimal doping, corresponding to a stable superconducting state of SxyS_{xy} symmetry, which fit the nodal structure of the superconducting order parameter in the Bi2212 compound, are obtained. The angular position of the node is found to be insensitive to the dopant concentration.Comment: Latex file, 8 output pages, 5 figures (available from Authors on request), to appear in Europhysics Letter

    Morphogenetic prepattern during embryonic development—a nonlinear analysis

    Get PDF
    AbstractBy considering a nonlinear reaction-diffusion negative feedback epigenetic control system, involving synthesis of the mitotic-inducing and inhibiting proteins simultaneously with intercellular self-diffusion and negative cross-diffusion of the latter only, Tapaswi and Saha [1] have showed the system generates a Turing structure during embryonic development. In this paper, we have observed, by using Lyapunov's direct method, that the pattern, thus generated, is globally asymptotically stable

    Pseudorandom Generators for Width-3 Branching Programs

    Full text link
    We construct pseudorandom generators of seed length O~(log(n)log(1/ϵ))\tilde{O}(\log(n)\cdot \log(1/\epsilon)) that ϵ\epsilon-fool ordered read-once branching programs (ROBPs) of width 33 and length nn. For unordered ROBPs, we construct pseudorandom generators with seed length O~(log(n)poly(1/ϵ))\tilde{O}(\log(n) \cdot \mathrm{poly}(1/\epsilon)). This is the first improvement for pseudorandom generators fooling width 33 ROBPs since the work of Nisan [Combinatorica, 1992]. Our constructions are based on the `iterated milder restrictions' approach of Gopalan et al. [FOCS, 2012] (which further extends the Ajtai-Wigderson framework [FOCS, 1985]), combined with the INW-generator [STOC, 1994] at the last step (as analyzed by Braverman et al. [SICOMP, 2014]). For the unordered case, we combine iterated milder restrictions with the generator of Chattopadhyay et al. [CCC, 2018]. Two conceptual ideas that play an important role in our analysis are: (1) A relabeling technique allowing us to analyze a relabeled version of the given branching program, which turns out to be much easier. (2) Treating the number of colliding layers in a branching program as a progress measure and showing that it reduces significantly under pseudorandom restrictions. In addition, we achieve nearly optimal seed-length O~(log(n/ϵ))\tilde{O}(\log(n/\epsilon)) for the classes of: (1) read-once polynomials on nn variables, (2) locally-monotone ROBPs of length nn and width 33 (generalizing read-once CNFs and DNFs), and (3) constant-width ROBPs of length nn having a layer of width 22 in every consecutive polylog(n)\mathrm{poly}\log(n) layers.Comment: 51 page

    Dynamical Mean Field Theory of Double Perovskite Ferrimagnets

    Full text link
    The dynamical mean field method is used to analyze the magnetic transition temperature and optical conductivity of a model for the ferrimagnetic double perovskites such as Sr2FeMoO6Sr_2FeMoO_6. The calculated transition temperatures and optical conductivities are found to depend sensitively on the band structure. For parameters consistent with local spin density approximation band calculations, the computed transition temperatures are lower than observed, and in particular decrease dramatically as band filling is increased, in contradiction to experiment. Band parameters which would increase the transition temperature are identified.Comment: Supercedes cond-mat/000628 (PRB64 024424/1-4 (2001

    A ratio-dependent eco-epidemiological model of the Salton sea

    Get PDF
    Ratio-dependent models set up a challenging issue for their rich dynamics incomparison to prey-dependent models. Little attention has been paid so far to describe the importance of transmissible disease in ecological situation by considering ratio-dependent models. In this paper, by assuming the predator response function as ratio-dependent, we consider a model of a system of three non-linear differential equations describing the time evolution of susceptible and infected Tilapia fish population and their predator, the Pelican. Existence and stability analysis of different equilibria of the system lead to different realistic thresholds in terms of system parameters. The condition for extinction of the species is also worked out. Our analytical and numerical studies may be helpful to chalk out suitable control strategies for minimizing the extinction of the Pelicans. We also suggest that supply of alternative food source for predator population may be used as a possible solution to save the predator from their extinction

    Structural domain and spin ordering induced glassy magnetic phase in single layered manganite Pr0.22_{0.22}Sr1.78_{1.78}MnO4_4

    Full text link
    The single layered manganite Pr0.22_{0.22}Sr1.78_{1.78}MnO4_4 undergoes structural transition from high temperature tetragonal phase to low temperature orthorhombic phase below room temperature. The orthorhombic phase was reported to have two structural variants with slightly different lattice parameters and Mn-3dd levels show orbital ordering within both the variants, albeit having mutually perpendicular ordering axis. In addition to orbital ordering, the orthorhombic variants also order antiferromagnetically with different N\'eel temperatures. Our magnetic investigation on the polycrystalline sample of Pr0.22_{0.22}Sr1.78_{1.78}MnO4_4 shows large thermal hysteresis indicating the first order nature of the tetragonal to orthorhombic transition. We observe magnetic memory, large relaxation, frequency dependent ac susceptbility and aging effects at low temperature, which indicate spin glass like magnetic ground state in the sample. The glassy magnetic state presumably arises from the interfacial frustration of orthorhombic domains with orbital and spin orderings playing crucial role toward the competing magnetic interactions.Comment: 6 pages, 4 figures, Accepted in Europhysics Letter
    corecore