1,259 research outputs found
Rebels? No, Simply Scientists
Michel Morange reviews Rebels, Mavericks, and Heretics in Biology, an alternative history of modern biological thought
Intermittency as a universal characteristic of the complete chromosome DNA sequences of eukaryotes: From protozoa to human genomes
Large-scale dynamical properties of complete chromosome DNA sequences of
eukaryotes are considered. By the proposed deterministic models with
intermittency and symbolic dynamics we describe a wide spectrum of large-scale
patterns inherent in these sequences, such as segmental duplications, tandem
repeats, and other complex sequence structures. It is shown that the recently
discovered gene number balance on the strands is not of random nature, and a
complete chromosome DNA sequence exhibits the properties of deterministic
chaos.Comment: 4 pages, 5 figure
Nucleotide Frequencies in Human Genome and Fibonacci Numbers
This work presents a mathematical model that establishes an interesting
connection between nucleotide frequencies in human single-stranded DNA and the
famous Fibonacci's numbers. The model relies on two assumptions. First,
Chargaff's second parity rule should be valid, and, second, the nucleotide
frequencies should approach limit values when the number of bases is
sufficiently large. Under these two hypotheses, it is possible to predict the
human nucleotide frequencies with accuracy. It is noteworthy, that the
predicted values are solutions of an optimization problem, which is commonplace
in many nature's phenomena.Comment: 12 pages, 2 figure
A Gibbs approach to Chargaff's second parity rule
Chargaff's second parity rule (CSPR) asserts that the frequencies of short
polynucleotide chains are the same as those of the complementary reversed
chains. Up to now, this hypothesis has only been observed empirically and there
is currently no explanation for its presence in DNA strands. Here we argue that
CSPR is a probabilistic consequence of the reverse complementarity between
paired strands, because the Gibbs distribution associated with the chemical
energy between the bonds satisfies CSPR. We develop a statistical test to study
the validity of CSPR under the Gibbsian assumption and we apply it to a large
set of bacterial genomes taken from the GenBank repository.Comment: 16 page
The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles
The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles,'' uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera'' and is free of charge.11Ysciescopu
Synthetic metallomolecules as agents for the control of DNA structure
This tutorial review summarises B-DNA structure and metallomolecule binding modes and illustrates some DNA structures induced by molecules containing metallic cations. The effects of aquated metal ions, cobalt amines, ruthenium octahedral metal complexes, metallohelicates and platinum complexes such as cis-platin are discussed alongside the techniques of NMR, X-ray crystallography, gel electrophoresis, circular dichroism, linear dichroism and molecular dynamics. The review will be of interest to people interested in both DNA structure and roles of metallomolecules in biological systems
Glycosaminoglycan and DNA binding induced intra- and intermolecular exciton coupling of the bis-4-aminoquinoline surfen
Despite the diverse biological activities of the glycosaminoglycan (GAG) antagonist surfen, the molecular details of its interaction with biomacromolecules remain poorly understood. Therefore, heparin and DNA binding properties of surfen were studied by circular dichroism (CD) and UV absorption spectroscopy methods. High-affinity (Ka ~ 107 M-1) association of surfen to the chiral heparin chain gives rise to a characteristic biphasic CD pattern due to the conformational twist of the aminoquinoline moieties around the central urea bridge. At higher drug loading, intermolecular stacking of surfen molecules alters the induced CD profile and also provokes strong UV hypochromism. In contrast to the right-handed heparin template, binding of surfen to the left-helicity chondroitin sulfate chains produces inverted CD pattern. Large UV hypochromism as well as polyphasic induced ellipticity bands indicate that surfen intercalates between the base pairs of calf-thymus DNA. Extensive CD spectroscopic changes observed at higher drug binding ratios refer to cooperative binding interactions between the intercalated drug molecules. The inherent conformational flexibility of surfen demonstrated here for the first time is important in its binding to distinct macromolecular targets and should be considered for rational drug design of novel GAG antagonists
- …