20 research outputs found

    Validation of a Thermal Conductivity Measurement System for Fuel Compacts

    Full text link
    A high temperature guarded-comparative-longitudinal heat flow measurement system has been built to measure the thermal conductivity of a composite nuclear fuel compact. It is a steady-state measurement device designed to operate over a temperature range of 300 K to 1200 K. No existing apparatus is currently available for obtaining the thermal conductivity of the composite fuel in a non-destructive manner due to the compact’s unique geometry and composite nature. The current system design has been adapted from ASTM E 1225. As a way to simplify the design and operation of the system, it uses a unique radiative heat sink to conduct heat away from the sample column. A finite element analysis was performed on the measurement system to analyze the associated error for various operating conditions. Optimal operational conditions have been discovered through this analysis and results are presented. Several materials have been measured by the system and results are presented for stainless steel 304, inconel 625, and 99.95% pure iron covering a range of thermal conductivities of 10 W/m*K to 70 W/m*K. A comparison of the results has been made to data from existing literature

    An Electromotive Force Measurement System for Alloy Fuels

    Get PDF
    The development of advanced nuclear fuels requires a better understanding of the transmutation and micro-structural evolution of the materials. Alloy fuels have the advantage of high thermal conductivity and improved characteristics in fuel-cladding chemical reaction. However, information on thermodynamic and thermophysical properties is limited. The objective of this project is to design and build an experimental system to measure the thermodynamic properties of solid materials from which the understanding of their phase change can be determined. The apparatus was used to measure the electromotive force (EMF) of several materials in order to calibrate and test the system. The EMF of chromel was measured from 100°C to 800°C and compared with theoretical values. Additionally, the EMF measurement of Ni-Fe alloy was performed and compared with the Ni-Fe phase diagram. The prototype system is to be modified eventually and used in a radioactive hot-cell in the future

    Natural Convection in a Bottom-Heated Top-Cooled Cubic Cavity with a Baffle at the Median Height: Experiment and Model Validation

    No full text
    This paper presents an experimental and numerical investigation on the natural convection flow and heat transfer in an enclosure with a single-hole baffle at the median height. The temperature in the fluid is quantified by means of temperature sensitive thermo-chromic liquid crystal (TLC) particles. The fluid flow velocity is measured non-intrusively with a full field particle tracking technique. The three-dimensional numerical model, developed and validated with experimental data, provides a computational tool for further investigation of mass and energy transport through the baffle openings in these types of enclosures. The experimentally visualized and numerically simulated flow structures show a pair of streams across the baffle-hole. The two chambers communicate through this pair of streams which carry the fluid exchange and heat transfer between the two chambers. At the baffle opening, the two streams are aligned in a diagonal direction across of the enclosure. The streams are accelerated and form jet-like flows that drive the whole circulation in the chambers. The jet-like flows leave the baffle opening, approach the vertical centerline of the cavity, and finally impinge on the top/bottom walls

    A Three-Dimensional Navier-Stokes–Based Numerical Model for Squeeze-Film Dampers. Part 1—Effects of Gaseous Cavitation on Pressure Distribution and Damping Coefficients without Consideration of Inertia

    No full text
    Even though most published results detailing damper behavior consider only the liquid phase, the cavitation process in the lubricant film, when it happens, is critical for the damper\u27s performance. A number of modeling approaches, such as the half-Sommerfeld and Elrod models, were proposed in order to account for the effects of cavitation on the pressure generation, without directly simulating the cavitation process. Based on the experimental data, a few other homogeneous cavitation models have also been developed. All these models are based on the classical Reynolds equation. In this article, a three-dimensional numerical model is developed and validated in connection with the operation of a two-phase squeeze-film damper. The full Navier-Stokes equations (NSE), coupled with a homogeneous cavitation model, is solved to simulate the flow of the two-phase lubricant film and the associated pressures. The pressure variation on the journal surface and the gas concentration distribution in the lubricating fluid (cavitated region) will be presented. The damping coefficients predicted by the NSE model are compared to the ones that resulted from the application of the Reynolds equation

    Damping and Added Mass Coefficients for a Squeeze Film Damper Using the Full 3-D Navier–Stokes Equation

    No full text
    Direct and cross-coupled damping coefficients are developed for the 2π-film, π-film (Gumbel cavitation condition) and homogeneous two-phase mixture films in a squeeze film damper. The numerical simulation uses the CFD-ACE+ commercial software, which employs a finite volume method for the discretization of the Navier–Stokes equations (NSE). In order to determine the dynamic coefficients, the NSE is combined with a finite perturbation method applied to the ‘equivalent journal’ of the damper. It was found that for the 2π-film and the Gumbel conditions, the damping coefficients exhibit linear characteristics, while the homogeneous cavitation model yields nonlinear coefficients. Using the CFD-ACE+, the inertia/added mass coefficients are derived for the limiting cases of the short and long dampers, respectively. The first set of forces is calculated by setting the fluid density to its actual value. The second set of forces is calculated when the density of the fluid is set close to zero (1E-10 kg/m3), thus practically eliminating the effects of the inertia terms. Subtracting the two sets of forces from each other, allows the determination of the inertia component contribution and the corresponding inertia coefficients. By varying the density, dynamic viscosity and whirling speed, it was found that the inertia coefficients follow a single curve represented by a function dependent on the modified Reynolds number, Re*. The inertia coefficients presented in this study are compared with the ones reported by other researchers that used the modified Reynolds equation. Some differences were found between the NSE based results and the Reynolds equation based outcomes. This is attributed to the three-dimensional effects introduced by the totality of the terms comprised in the full NSE

    Transport through Baffles in Bottom Heated Top Cooled Enclosures: Parametric Studies

    No full text
    This paper presents parametric studies on the heat transfer and fluid exchange through single-hole baffles located at the median height in bottom heated top cooled enclosures. Results indicate that when the baffle area-opening ratio is smaller than 2%, the heat transfer in the enclosure is dominated by the transport through the baffle opening. Even with such small baffle openings, increasing the enclosure aspect ratio still enhances the transport across the baffle. The characteristic length scale of flow in the enclosure is a combination of baffle opening diameter and the chamber height. The Nusselt number that characterize the heat transfer through the baffle-hole is linearly correlated with the Rayleigh number based on baffle opening diameter and the temperature difference between the bulk temperatures in the two chambers, while no effects of Prandtl numbers are observed. The mechanism of transport across the baffle opening varies from conduction dominated, combined conduction and convection, and convection dominated regimes as Rayleigh number increases

    Flows in a Lower Half Heated Upper Half Cooled Cylindrical Model Reactor Loaded with Porous Media

    No full text
    This paper presents an experimental and numerical investigation on the natural convection flow in a cylindrical model hydrothermal reactor. The flow is visualized non-intrusively and simulated with a conjugate computational model. Results show that the flow structure consists of wall layers and core flows. In the lower half, the flows are steady due to the porous media. The three-dimensional unsteady upper core flow is driven by the streams originated from the wall layer collision. The thermal condition in the upper half core region is mainly determined by the total heat flow rate specified on the lower sidewall; while the variations of porous media parameters, in the normal range for hydrothermal crystal growth process, have minor effects

    Fluid Flow and Heat Transfer in a Cylindrical Model Hydrothermal Reactor

    No full text
    Achieving better thermal environment for the growth of high quality single crystals has been the focus of numerous investigations. However, a literature review reveals that the topics of research dealt either with turbulent flow in industry size cylindrical hydrothermal autoclaves, or laminar flows in rectangular enclosures. This paper attempts to add new insight to the above-mentioned state of the art. The flow and heat transfer in a lower-half heated, upper-half cooled cylindrical model hydrothermal reactor are studied experimentally and numerically. Results show that for the parameters chosen, the flow in the model reactor is transient. The unsteady jet-like flow in each of the chambers originates from the fluid exchange at the baffle opening. The time-averaged temperature and flow profiles appear to be axially symmetric. The temperature and velocity fluctuations in the near-baffle region are significantly larger than in the rest of the chambers. The total heat flow rate is instrumental on the thermal environment in the upper chamber, while the heating conditions on the lower chamber wall have only minor effects

    A Three-Dimensional Navier-Stokes-Based Numerical Model for Squeeze Film Dampers. Part 2—Effects of Gaseous Cavitation on the Behavior of the Squeeze Film Damper

    No full text
    The damping coefficients for a squeeze film damper (SFD) were determined and discussed in Part 1 using the full Navier-Stokes equations (NSE) coupled with a homogeneous cavitation model. In this continuation, Part 2, article these coefficients are introduced into the governing equations of motion to determine the trajectory of the rotor and its stability. The nonlinear response of the damper predicted by the NSE model is compared to results obtained from the application of the Reynolds equation. The influences of gas mass concentration as well as that of the amount of imbalance on transmissibility and eccentricity of the damper are also investigated
    corecore