722 research outputs found
Search for quantum dimer phases and transitions in a frustrated spin ladder
A two-leg spin-1/2 ladder with diagonal interactions is investigated
numerically. We focus our attention on the possibility of columnar dimer phase,
which was recently predicted based on a reformulated bosonization theory. By
using density matrix renormalization group technique and exact diagonalization
method, we calculate columnar dimer order parameter, spin correlation on a
rung, string order parameters, and scaled excitation gaps. Carefully using
various finite-size scaling techniques, our results show no support for the
existence of columnar dimer phase in the spin ladder under consideration.Comment: 5 pages, 4 figures. To be published in Phys. Rev.
Integrin-mediated membrane blebbing is dependent on the NHE1 and NCX1 activities.
Integrin-mediated signal transduction and membrane blebbing have been well studied to modulate cell adhesion, spreading and migration^1-6^. However, the relationship between membrane blebbing and integrin signaling has not been explored. Here we show that integrin-ligand interaction induces membrane blebbing and membrane permeability change. We found that sodium-proton exchanger 1 (NHE1) and sodium-calcium exchanger 1 (NCX1) are located in the membrane blebbing sites and inhibition of NHE1 disrupts membrane blebbing and decreases membrane permeability change. However, inhibition of NCX1 enhances cell blebbing to cause cell swelling which is correlated with an intracellular sodium accumulation induced by NHE17. These data suggest that sodium influx induced by NHE1 is a driving force for membrane blebbing growth, while sodium efflux induced by NCX1 in a reverse mode causes membrane blebbing retraction. Together, these data reveal a novel function of NHE1 and NCX1 in membrane permeability change and blebbing and provide the link for integrin signaling and membrane blebbing
Deer Antler Extract Improves Fatigue Effect through Altering the Expression of Genes Related to Muscle Strength in Skeletal Muscle of Mice
Deer antler is a well-known traditional Chinese medicine used in Asian countries for the tonic and the improvement of aging symptoms. The present study was designed to investigate the antifatigue effect and mechanism of Formosan sambar deer tip antler extract (FSDTAE). The swimming times to exhaustion of mice administered FSDTAE (8.2 mg/day) for 28 days were apparently longer than those of the vehicle-treated mice in forced swim test. However, the indicators of fatigue, such as the reduction in glucose level and the increases in blood urea nitrogen and lactic acid levels, were not significantly inhibited by FSDTAE. Therefore, microarray analysis was further used to examine the anti-fatigue mechanism of FSDTAE. We selected genes with fold changes >2 or <−2 in skeletal muscle for pathway analysis. FSDTAE-affected genes were involved in 9 different signaling pathways, such as GnRH signaling pathway and insulin signaling pathway. All of the significantly expressed genes were classified into 8 different categories by their functions. The most enriched category was muscular system, and 6 upregulated genes, such as troponin I, troponin T1, cysteine and glycine-rich protein 2, myosin heavy polypeptide 7, tropomyosin 2, and myomesin family member 3, were responsible for the development and contraction of muscle. Real-time PCR analysis indicated that FSDTAE increased troponins mRNA expression in skeletal muscle. In conclusion, our findings suggested that FSDTAE might increase the muscle strength through the upregulation of genes responsible for muscle contraction and consequently exhibited the anti-fatigue effect in mice
Flux tunable graphene-based superconducting quantum circuits coupled to 3D cavity
Correlation between transmon and its composite Josephson junctions (JJ) plays
an important role in designing new types of superconducting qubits based on
quantum materials. It is desirable to have a type of device that not only
allows exploration for use in quantum information processing but also probing
intrinsic properties in the composite JJs. Here, we construct a flux-tunable 3D
transmon-type superconducting quantum circuit made of graphene as a
proof-of-concept prototype device. This 3D transmon-type device not only
enables coupling to 3D cavities for microwave probes but also permits DC
transport measurements on the same device, providing useful connections between
transmon properties and critical currents associated with JJ's properties. We
have demonstrated how flux-modulation in cavity frequency and DC critical
current can be correlated under the influence of Fraunhofer pattern of JJs in
an asymmetric SQUID. The correlation analysis was further extended to link the
flux-modulated transmon properties, such as flux-tunability in qubit and cavity
frequencies, with SQUID symmetry analysis based on DC measurements. Our study
paves the way towards integrating novel materials for exploration of new types
of quantum devices for future technology while probing underlying physics in
the composite materials
A Real-Time Feature Indexing System on Live Video Streams
Most of the existing video storage systems rely on offline processing to support the feature-based indexing on video streams. The feature-based indexing technique provides an effec- tive way for users to search video content through visual features, such as object categories (e.g., cars and persons). However, due to the reliance on offline processing, video streams along with their captured features cannot be searchable immediately after video streams are recorded. According to our investigation, buffering and storing live video steams are more time-consuming than the YOLO v3 object detector. Such observation motivates us to propose a real-time feature indexing (RTFI) system to enable instantaneous feature-based indexing on live video streams after video streams are captured and processed through object detectors. RTFI achieves its real-time goal via incorporating the novel design of metadata structure and data placement, the capability of modern object detector (i.e., YOLO v3), and the deduplication techniques to avoid storing repetitive video content. Notably, RTFI is the first system design for realizing real-time feature-based indexing on live video streams. RTFI is implemented on a Linux server and can improve the system throughput by upto 10.60x, compared with the base system without the proposed design. In addition, RTFI is able to make the video content searchable within 20 milliseconds for 10 live video streams after the video content is received by the proposed system, excluding the network transfer latency
- …