710 research outputs found

    The Radio Afterglow and the Host Galaxy of the X-Ray Rich GRB 981226

    Full text link
    We report the discovery of a radio transient VLA 232937.2-235553, coincident with the proposed X-ray afterglow for the gamma-ray burst GRB 981226. This GRB has the highest ratio of X-ray to gamma-ray fluence of all the GRBs detected by BeppoSAX so far and yet no corresponding optical transient was detected. The radio light curve of VLA 232937.2-235553 is qualitatively similar to that of several other radio afterglows. At the sub-arcsecond position provided by the radio detection, optical imaging reveals an extended R=24.9 mag object, which we identify as the host galaxy of GRB 981226. Afterglow models which invoke a jet-like geometry for the outflow or require an ambient medium with a radial density dependence, such as that produced by a wind from a massive star, are both consistent with the radio data. Furthermore, we show that the observed properties of the radio afterglow can explain the absence of an optical transient without the need for large extinction local to the GRB.Comment: Accepted for publication in the Astrophysical Journal Letters. Thirteen pages. Three Postscript figure

    The afterglows of gamma-ray bursts

    Get PDF
    Gamma-ray burst astronomy has undergone a revolution in the last three years, spurred by the discovery of fading long-wavelength counterparts. We now know that at least the long duration GRBs lie at cosmological distances with estimated electromagnetic energy release of 10^51–10^53 erg, making these the brightest explosions in the Universe. In this article we review the current observational state, beginning with the statistics of X-ray, optical, and radio afterglow detections. We then discuss the insights these observations have given to the progenitor population, the energetics of the GRB events, and the physics of the afterglow emission. We focus particular attention on the evidence linking GRBs to the explosion of massive stars. Throughout, we identify remaining puzzles and uncertainties, and emphasize promising observational tools for addressing them. The imminent launch of HETE-2 and the increasingly sophisticated and coordinated ground-based and space-based observations have primed this field for fantastic growth

    The afterglows of gamma-ray bursts

    Get PDF
    Gamma-ray burst astronomy has undergone a revolution in the last three years, spurred by the discovery of fading long-wavelength counterparts. We now know that at least the long duration GRBs lie at cosmological distances with estimated electromagnetic energy release of 10^51–10^53 erg, making these the brightest explosions in the Universe. In this article we review the current observational state, beginning with the statistics of X-ray, optical, and radio afterglow detections. We then discuss the insights these observations have given to the progenitor population, the energetics of the GRB events, and the physics of the afterglow emission. We focus particular attention on the evidence linking GRBs to the explosion of massive stars. Throughout, we identify remaining puzzles and uncertainties, and emphasize promising observational tools for addressing them. The imminent launch of HETE-2 and the increasingly sophisticated and coordinated ground-based and space-based observations have primed this field for fantastic growth. This overview is a combined write-up of talks given at this conference and in NASA's Goddard Space Flight Center

    The afterglows of gamma-ray bursts

    Get PDF
    Gamma-ray burst astronomy has undergone a revolution in the last three years, spurred by the discovery of fading long-wavelength counterparts. We now know that at least the long-duration GRBs lie at cosmological distances with estimated electromagnetic energy release of 10^51–10^53 erg, making these the brightest explosions in the Universe. In this article we review the current observational state, beginning with the statistics of X-ray, optical, and radio afterglow detections. We then discuss the insights these observations have given to the progenitor population, the energetics of the GRB events, and the physics of the afterglow emission. We focus particular attention on the evidence linking GRBs to the explosion of massive stars. Throughout, we identify remaining puzzles and uncertainties, and emphasize promising observational tools for addressing them. The imminent launch of HETE-2 and the increasingly sophisticated and coordinated ground-based and space-based observations have primed this field for fantastic growth

    Peculiar Broad Absorption Line Quasars found in DPOSS

    Full text link
    With the recent release of large (i.e., > hundred million objects), well-calibrated photometric surveys, such as DPOSS, 2MASS, and SDSS, spectroscopic identification of important targets is no longer a simple issue. In order to enhance the returns from a spectroscopic survey, candidate sources are often preferentially selected to be of interest, such as brown dwarfs or high redshift quasars. This approach, while useful for targeted projects, risks missing new or unusual species. We have, as a result, taken the alternative path of spectroscopically identifying interesting sources with the sole criterion being that they are in low density areas of the g - r and r - i color-space defined by the DPOSS survey. In this paper, we present three peculiar broad absorption line quasars that were discovered during this spectroscopic survey, demonstrating the efficacy of this approach. PSS J0052+2405 is an Iron LoBAL quasar at a redshift z = 2.4512 with very broad absorption from many species. PSS J0141+3334 is a reddened LoBAL quasar at z = 3.005 with no obvious emission lines. PSS J1537+1227 is a Iron LoBAL at a redshift of z = 1.212 with strong narrow Mgii and Feii emission. Follow-up high resolution spectroscopy of these three quasars promises to improve our understanding of BAL quasars. The sensitivity of particular parameter spaces, in this case a two-color space, to the redshift of these three sources is dramatic, raising questions about traditional techniques of defining quasar populations for statistical analysis.Comment: 27 pages, 13 figures, Accepted to the Astronomical Journa

    The Cosmic Gamma-Ray Bursts

    Get PDF
    Cosmic gamma-ray bursts are one of the great frontiers of astrophysics today. They are a playground of relativists and observers alike. They may teach us about the death of stars and the birth of black holes, the physics in extreme conditions, and help us probe star formation in the distant and obscured universe. In this review we summarise some of the remarkable progress in this field over the past few years. While the nature of the GRB progenitors is still unsettled, it now appears likely that at least some bursts originate in explosions of very massive stars, or at least occur in or near the regions of massive star formation. The physics of the burst afterglows is reasonably well understood, and has been tested and confirmed very well by the observations. Bursts are found to be beamed, but with a broad range of jet opening angles; the mean gamma-ray energies after the beaming corrections are ~ 10^51 erg. Bursts are associated with faint ~ 25 mag) galaxies at cosmological redshifts, with ~ 1. The host galaxies span a range of luminosities and morphologies, but appear to be broadly typical for the normal, actively star-forming galaxy populations at comparable redshifts and magnitudes. Some of the challenges for the future include: the nature of the short bursts and possibly other types of bursts and transients; use of GRBs to probe the obscured star formation in the universe, and possibly as probes of the very early universe; and their detection as sources of high-energy particles and gravitational waves.Comment: An invited review, to appear in: Proc. IX Marcel Grossmann Meeting, eds. V. Gurzadyan, R. Jantzen, and R. Ruffini, Singapore: World Scientific, in press (2001); Latex file, 33 pages, 22 eps figures, style files include

    High-Resolution Keck Spectra of the Associated Absorption Lines in 3C 191

    Get PDF
    Associated absorption lines (AALs) are valuable probes of the gaseous environments near quasars. Here we discuss high-resolution (6.7 km/s) spectra of the AALs in the radio-loud quasar 3C 191 (redshift z=1.956). The measured AALs have ionizations ranging from Mg I to N V, and multi-component profiles that are blueshifted by ~400 to ~1400 km/s relative to the quasar's broad emission lines. These data yield the following new results. 1) The density based on Si II*/Si II lines is ~300 cm-3, implying a distance of ~28 kpc from the quasar if the gas is photoionized. 2) The characteristic flow time is thus \~3 x 10^7 yr. 3) Strong Mg I AALs identify neutral gas with very low ionization parameter and high density. We estimate n_H > 5 x 10^4 cm-3 in this region, compared to ~15 cm-3 where the N V lines form. 4) The total column density is N_H < 4 x 10^18 cm-2 in the neutral gas and N_H ~ 2 x 10^20 cm-2 in the moderately ionized regions. 5) The total mass in the AAL outflow is M ~ 2 x 10^9 Mo, assuming a global covering factor (as viewed from the quasar) of ~10% >. 6) The absorbing gas only partially covers the background light source(s) along our line(s) of sight, requiring absorption in small clouds or filaments <0.01 pc across. The ratio N_H/n_H implies that the clouds have radial (line- of-sight) thicknesses <0.2 pc. These properties might characterize a sub-class of AALs that are physically related to quasars but form at large distances. We propose a model for the absorber in which pockets of dense neutral gas are surrounded by larger clouds of generally lower density and higher ionization. This outflowing material might be leftover from a blowout associated with a nuclear starburst, the onset of quasar activity or a past broad absorption line (BAL) wind phase.Comment: 15 pages text plus 6 figures, in press with Ap

    Cosmological Uses of Gamma-Ray Bursts

    Get PDF
    Studies of the cosmic gamma-ray bursts (GRBs) and their host galaxies are starting to provide interesting or even unique new insights in observational cosmology. GRBs represent a new way of identifying a population of star-forming galaxies at cosmological redshifts. GRB hosts are broadly similar to the normal field galaxy populations at comparable redshifts and magnitudes, and indicate at most a mild luminosity evolution out to z ~ 1.5 - 2. GRB optical afterglows seen in absorption provide a powerful new probe of the ISM in dense, central regions of their host galaxies, complementary to the traditional studies using QSO absorbers. Some GRB hosts are heavily obscured, and provide a new way to select a population of cosmological sub-mm sources, and a novel constraint on the total obscured fraction of star formation over the history of the universe. Finally, detection of GRB afterglows at z > 6 may provide a unique way to probe the primordial star formation, massive IMF, early IGM, and chemical enrichment at the end of the cosmic reionization era.Comment: An invited review, to appear in: "Gamma-Ray Bursts in the Afterglow Era: 3rd Workshop", ASPCS, in press; LaTeX file, 8 pages, 1 eps figure, style files include
    • …
    corecore