230 research outputs found
Meta-analysis of the detection of plant pigment concentrations using hyperspectral remotely sensed data
Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550–560nm) and red edge (680–750nm) regions; chlorophyll b on the red, (630–660nm), red edge (670–710nm) and the near-infrared (800–810nm); carotenoids on the 500–580nm region; and anthocyanins on the green (550–560nm), red edge (700–710nm) and near-infrared (780–790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a
Bayesian molecular clock dating of species divergences in the genomics era
It has been five decades since the proposal of the molecular clock hypothesis, which states that the rate of evolution at the molecular level is constant through time and among species. This hypothesis has become a powerful tool in evolutionary biology, making it possible to use molecular sequences to estimate the geological ages of species divergence events. With recent advances in Bayesian clock dating methodology and the explosive accumulation of genetic sequence data, molecular clock dating has found widespread applications, from tracking virus pandemics, to studying the macroevolutionary process of speciation and extinction, to estimating a timescale for Life on Earth
Molecular phylogenetics and temporal diversification in the genus Aeromonas based on the sequences of five housekeeping genes
Several approaches have been developed to estimate both the relative and absolute rates of speciation and extinction within clades based on molecular phylogenetic reconstructions of evolutionary relationships, according to an underlying model of diversification. However, the macroevolutionary models established for eukaryotes have scarcely been used with prokaryotes. We have investigated the rate and pattern of cladogenesis in the genus Aeromonas (γ-Proteobacteria, Proteobacteria, Bacteria) using the sequences of five housekeeping genes and an uncorrelated relaxed-clock approach. To our knowledge, until now this analysis has never been applied to all the species described in a bacterial genus and thus opens up the possibility of establishing models of speciation from sequence data commonly used in phylogenetic studies of prokaryotes. Our results suggest that the genus Aeromonas began to diverge between 248 and 266 million years ago, exhibiting a constant divergence rate through the Phanerozoic, which could be described as a pure birth process
Noninvasive optical inhibition with a red-shifted microbial rhodopsin
Optogenetic inhibition of the electrical activity of neurons enables the causal assessment of their contributions to brain functions. Red light penetrates deeper into tissue than other visible wavelengths. We present a red-shifted cruxhalorhodopsin, Jaws, derived from Haloarcula (Halobacterium) salinarum (strain Shark) and engineered to result in red light–induced photocurrents three times those of earlier silencers. Jaws exhibits robust inhibition of sensory-evoked neural activity in the cortex and results in strong light responses when used in retinas of retinitis pigmentosa model mice. We also demonstrate that Jaws can noninvasively mediate transcranial optical inhibition of neurons deep in the brains of awake mice. The noninvasive optogenetic inhibition opened up by Jaws enables a variety of important neuroscience experiments and offers a powerful general-use chloride pump for basic and applied neuroscience.McGovern Institute for Brain Research at MIT (Razin Fellowship)United States. Defense Advanced Research Projects Agency. Living Foundries Program (HR0011-12-C-0068)Harvard-MIT Joint Research Grants Program in Basic NeuroscienceHuman Frontier Science Program (Strasbourg, France)Institution of Engineering and Technology (A. F. Harvey Prize)McGovern Institute for Brain Research at MIT. Neurotechnology (MINT) ProgramNew York Stem Cell Foundation (Robertson Investigator Award)National Institutes of Health (U.S.) (New Innovator Award 1DP2OD002002)National Institute of General Medical Sciences (U.S.) (EUREKA Award 1R01NS075421)National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1RC1MH088182)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Science Foundation (U.S.) (Career Award CBET 1053233)National Science Foundation (U.S.) (Grant EFRI0835878)National Science Foundation (U.S.) (Grant DMS0848804)Society for Neuroscience (Research Award for Innovation in Neuroscience)Wallace H. Coulter FoundationNational Institutes of Health (U.S.) (RO1 MH091220-01)Whitehall FoundationEsther A. & Joseph Klingenstein Fund, Inc.JPB FoundationPIIF FundingNational Institute of Mental Health (U.S.) (R01-MH102441-01)National Institutes of Health (U.S.) (DP2-OD-017366-01)Massachusetts Institute of Technology. Simons Center for the Social Brai
On Dorsal Prothoracic Appendages in Treehoppers (Hemiptera: Membracidae) and the Nature of Morphological Evidence
A spectacular hypothesis was published recently, which suggested that the “helmet” (a dorsal thoracic sclerite that obscures most of the body) of treehoppers (Insecta: Hemiptera: Membracidae) is connected to the 1st thoracic segment (T1; prothorax) via a jointed articulation and therefore was a true appendage. Furthermore, the “helmet” was interpreted to share multiple characteristics with wings, which in extant pterygote insects are present only on the 2nd (T2) and 3rd (T3) thoracic segments. In this context, the “helmet” could be considered an evolutionary novelty. Although multiple lines of morphological evidence putatively supported the “helmet”-wing homology, the relationship of the “helmet” to other thoracic sclerites and muscles remained unclear. Our observations of exemplar thoraces of 10 hemipteran families reveal multiple misinterpretations relevant to the “helmet”-wing homology hypothesis as originally conceived: 1) the “helmet” actually represents T1 (excluding the fore legs); 2) the “T1 tergum” is actually the anterior dorsal area of T2; 3) the putative articulation between the “helmet” and T1 is actually the articulation between T1 and T2. We conclude that there is no dorsal, articulated appendage on the membracid T1. Although the posterior, flattened, cuticular evagination (PFE) of the membracid T1 does share structural and genetic attributes with wings, the PFE is actually widely distributed across Hemiptera. Hence, the presence of this structure in Membracidae is not an evolutionary novelty for this clade. We discuss this new interpretation of the membracid T1 and the challenges of interpreting and representing morphological data more broadly. We acknowledge that the lack of data standards for morphology is a contributing factor to misinterpreted results and offer an example for how one can reduce ambiguity in morphology by referencing anatomical concepts in published ontologies
Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.)
The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT–PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain
Solid-state MAS NMR, TEM, and TGA studies of structural hydroxyl groups and water in nanocrystalline apatites prepared by dry milling
Unfaithful Maintenance of Methylation Imprints Due to Loss of Maternal Nuclear Dnmt1 during Somatic Cell Nuclear Transfer
The low success rate of somatic cell nuclear transfer (SCNT) in mammalian cloning is largely due to imprinting problems. However, little is known about the mechanisms of reprogramming imprinted genes during SCNT. Parental origin-specific DNA methylation regulates the monoallelic expression of imprinted genes. In natural fertilization, methylation imprints are established in the parental germline and maintained throughout embryonic development. However, it is unclear whether methylation imprints are protected from global changes of DNA methylation in cloned preimplantation embryos. Here, we demonstrate that cloned porcine preimplantation embryos exhibit demethylation at differentially methylated regions (DMRs) of imprinted genes; in particular, demethylation occurs during the first two cell cycles. By RNAi-mediated knockdown, we found that Dnmt1 is required for the maintenance of methylation imprints in porcine preimplantation embryos. However, no clear signals were detected in the nuclei of oocytes and preimplantation embryos by immunofluorescence. Thus, Dnmt1 is present at very low levels in the nuclei of porcine oocytes and preimplantation embryos and maintains methylation imprints. We further showed that methylation imprints were rescued in nonenucleated metaphase II (MII) oocytes. Our results indicate that loss of Dnmt1 in the maternal nucleus during SCNT significantly contributes to the unfaithful maintenance of methylation imprints in cloned embryos
Developing and testing an instrument for identifying performance incentives in the Greek health care sector
BACKGROUND: In the era of cost containment, managers are constantly pursuing increased organizational performance and productivity by aiming at the obvious target, i.e. the workforce. The health care sector, in which production processes are more complicated compared to other industries, is not an exception. In light of recent legislation in Greece in which efficiency improvement and achievement of specific performance targets are identified as undisputable health system goals, the purpose of this study was to develop a reliable and valid instrument for investigating the attitudes of Greek physicians, nurses and administrative personnel towards job-related aspects, and the extent to which these motivate them to improve performance and increase productivity. METHODS: A methodological exploratory design was employed in three phases: a) content development and assessment, which resulted in a 28-item instrument, b) pilot testing (N = 74) and c) field testing (N = 353). Internal consistency reliability was tested via Cronbach's alpha coefficient and factor analysis was used to identify the underlying constructs. Tests of scaling assumptions, according to the Multitrait-Multimethod Matrix, were used to confirm the hypothesized component structure. RESULTS: Four components, referring to intrinsic individual needs and external job-related aspects, were revealed and explain 59.61% of the variability. They were subsequently labeled: job attributes, remuneration, co-workers and achievement. Nine items not meeting item-scale criteria were removed, resulting in a 19-item instrument. Scale reliability ranged from 0.782 to 0.901 and internal item consistency and discriminant validity criteria were satisfied. CONCLUSION: Overall, the instrument appears to be a promising tool for hospital administrations in their attempt to identify job-related factors, which motivate their employees. The psychometric properties were good and warrant administration to a larger sample of employees in the Greek healthcare system
Early outgrowth cells versus endothelial colony forming cells functions in platelet aggregation
- …
