3,504 research outputs found
Theoretical studies of the local structures and EPR parameters for Cu center in Cd(NH)(SO) single crystal
The electron paramagnetic resonance (EPR) parameters ( factors and
the hyperfine structure constants , ) are
interpreted by using the perturbation formulae for a ion in
rhombically ({D}) elongated octahedra. In the calculated formulae, the
crystal field parameters are set up from the superposition model, and the
contribution to the EPR parameters from the admixture of -orbitals in the
ground state wave function of the Cu ion was taken into account. Based
on the calculation, local structural parameters of the impurity Cu
center in Cd(NH)(SO) (CAS) crystal were obtained
(i.e., {\AA}, {\AA},
{\AA}). The theoretical EPR parameters based on the
above Cu-O bond lengths in CAS crystal show a good agreement with
the observed values. The results are discussed.Comment: 5 page
Microscopic Models for Ultrarelativistic Heavy Ion Collisions
In this paper, the concepts of microscopic transport theory are introduced
and the features and shortcomings of the most commonly used ansatzes are
discussed. In particular, the Ultrarelativistic Quantum Molecular Dynamics
(UrQMD) transport model is described in great detail. Based on the same
principles as QMD and RQMD, it incorporates a vastly extended collision term
with full baryon-antibaryon symmetry, 55 baryon and 32 meson species. Isospin
is explicitly treated for all hadrons. The range of applicability stretches
from GeV/nucleon, allowing for
a consistent calculation of excitation functions from the intermediate energy
domain up to ultrarelativistic energies. The main physics topics under
discussion are stopping, particle production and collective flow.Comment: 129 pages, pagestyle changed using US letter (8.5x11 in) format. The
whole paper (13 Mb ps file) could also be obtained from
ftp://ftp.th.physik.uni-frankfurt.de/pub/urqmd/ppnp2.ps.g
The Search for Other Planets and Life
This Les Houches School offers students a wide ranging view of the field of exoplanets and the search for life beyond the solar system. Observational and theoretical opportunities abound in a new field of astronomy that will be growing for decades to come. I give a brief introduction and overview to the many detailed talks that will be presented in this volume
Effects of steady state free precession parameters on cardiac mass, function, and volumes
G0400444/Medical Research Council/United Kingdom
Wellcome Trust/United Kingdo
Theory of magnetotunneling spectroscopy in spin triplet p-wave superconductors
We study the influence of a magnetic field on the zero-bias conductance
peak (ZBCP) due to zero-energy Andreev bound state (ZES) in normal metal /
unconventional superconductor. For p-wave junctions, ZBCP does not split into
two by even for sufficiently low transparent junctions, where ZBCP clearly
splits for d-wave. This unique property originates from the fact that for
p-wave superconductors, perpendicularly injected quasiparticle form ZES, which
contribute most dominantly on the tunneling conductance. In addition, we show
that for +i-wave superconductor junctions, the height of ZBCP is
sensitive to due to the formation of broken time reversal symmetry state.
We propose that tunneling spectroscopy in the presence of magnetic field,
, , is an promising method to determine the pairing
symmetry of unconventional superconductors.Comment: 4 pages, 6 figures, using jpsj2.cl
Atomic structure at 2.5 Å resolution of uridine phosphorylase from E. coli as refined in the monoclinic crystal lattice
AbstractUridine phosphorylase from E. coli (Upase) has been crystallized using vapor diffusion technique in a new monoclinic crystal form. The structure was determined by the molecular replacement method at 2.5 Å resolution. The coordinates of the trigonal crystal form were used as a starting model and the refinement by the program XPLOR led to the R-factor of 18.6%. The amino acid fold of the protein was found to be the same as that in the trigonal crystals. The positions of flexible regions were refined. The conclusion about the involvement in the active site is in good agreement with the results of the biochemical experiments
Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2
The discovery of a new family of high Tc materials, the iron arsenides
(FeAs), has led to a resurgence of interest in superconductivity. Several
important traits of these materials are now apparent, for example, layers of
iron tetrahedrally coordinated by arsenic are crucial structural ingredients.
It is also now well established that the parent non-superconducting phases are
itinerant magnets, and that superconductivity can be induced by either chemical
substitution or application of pressure, in sharp contrast to the cuprate
family of materials. The structure and properties of chemically substituted
samples are known to be intimately linked, however, remarkably little is known
about this relationship when high pressure is used to induce superconductivity
in undoped compounds. Here we show that the key structural features in
BaFe2As2, namely suppression of the tetragonal to orthorhombic phase transition
and reduction in the As-Fe-As bond angle and Fe-Fe distance, show the same
behavior under pressure as found in chemically substituted samples. Using
experimentally derived structural data, we show that the electronic structure
evolves similarly in both cases. These results suggest that modification of the
Fermi surface by structural distortions is more important than charge doping
for inducing superconductivity in BaFe2As2
Tomography of pairing symmetry from magnetotunneling spectroscopy -- a case study for quasi-1D organic superconductors
We propose that anisotropic -, -, or -wave pairing symmetries can be
distinguished from a tunneling spectroscopy in the presence of magnetic fields,
which is exemplified here for a model organic superconductor .
The shape of the Fermi surface (quasi-one-dimensional in this example) affects
sensitively the pairing symmetry, which in turn affects the shape (U or V) of
the gap along with the presence/absence of the zero-bias peak in the tunneling
in a subtle manner. Yet, an application of a magnetic field enables us to
identify the symmetry, which is interpreted as an effect of the Doppler shift
in Andreev bound states.Comment: 4 papegs, 4 figure
- …