4,774 research outputs found

    Predicting diabetes-related hospitalizations based on electronic health records

    Full text link
    OBJECTIVE: To derive a predictive model to identify patients likely to be hospitalized during the following year due to complications attributed to Type II diabetes. METHODS: A variety of supervised machine learning classification methods were tested and a new method that discovers hidden patient clusters in the positive class (hospitalized) was developed while, at the same time, sparse linear support vector machine classifiers were derived to separate positive samples from the negative ones (non-hospitalized). The convergence of the new method was established and theoretical guarantees were proved on how the classifiers it produces generalize to a test set not seen during training. RESULTS: The methods were tested on a large set of patients from the Boston Medical Center - the largest safety net hospital in New England. It is found that our new joint clustering/classification method achieves an accuracy of 89% (measured in terms of area under the ROC Curve) and yields informative clusters which can help interpret the classification results, thus increasing the trust of physicians to the algorithmic output and providing some guidance towards preventive measures. While it is possible to increase accuracy to 92% with other methods, this comes with increased computational cost and lack of interpretability. The analysis shows that even a modest probability of preventive actions being effective (more than 19%) suffices to generate significant hospital care savings. CONCLUSIONS: Predictive models are proposed that can help avert hospitalizations, improve health outcomes and drastically reduce hospital expenditures. The scope for savings is significant as it has been estimated that in the USA alone, about $5.8 billion are spent each year on diabetes-related hospitalizations that could be prevented.Accepted manuscrip

    Observation of Magnetic Moments in the Superconducting State of YBa2_2Cu3_3O6.6_{6.6}

    Get PDF
    Neutron Scattering measurements for YBa2_2Cu3_3O6.6_{6.6} have identified small magnetic moments that increase in strength as the temperature is reduced below TT^\ast and further increase below TcT_c. An analysis of the data shows the moments are antiferromagnetic between the Cu-O planes with a correlation length of longer than 195 \AA in the aa-bb plane and about 35 \AA along the c-axis. The origin of the moments is unknown, and their properties are discusssed both in terms of Cu spin magnetism and orbital bond currents.Comment: 9 pages, and 4 figure

    Hyperon semileptonic decays and quark spin content of the proton

    Get PDF
    We investigate the hyperon semileptonic decays and the quark spin content of the proton ΔΣ\Delta \Sigma taking into account flavor SU(3) symmetry breaking. Symmetry breaking is implemented with the help of the chiral quark-soliton model in an approach, in which the dynamical parameters are fixed by the experimental data for six hyperon semileptonic decay constants. As a result we predict the unmeasured decay constants, particularly for Ξ0Σ+\Xi^0 \to \Sigma^+, which will be soon measured and examine the effect of the SU(3) symmetry breaking on the spin content ΔΣ\Delta \Sigma of the proton. Unfortunately large experimental errors of Ξ\Xi^- decays propagate in our analysis making ΔΣ\Delta \Sigma and Δs\Delta s practically undetermined. We conclude that statements concerning the values of these two quantities, which are based on the exact SU(3) symmetry, are premature. We stress that the meaningful results can be obtained only if the experimental errors for the Ξ\Xi decays are reduced.Comment: The final version accepted for publication in Phys. Rev. D. 18 pages, RevTex is used with 4 figures include

    The connection between superconducting phase correlations and spin excitations in YBa2_2Cu3_3O6.6_{6.6}: A magnetic field study

    Full text link
    One of the most striking universal properties of the high-transition-temperature (high-TcT_c) superconductors is that they are all derived from the hole-doping of their insulating antiferromagnetic (AF) parent compounds. From the outset, the intimate relationship between magnetism and superconductivity in these copper-oxides has intrigued researchers. Evidence for this link comes from neutron scattering experiments that show the unambiguous presence of short-range AF correlations (excitations) in cuprate superconductors. Even so, the role of such excitations in the pairing mechanism and superconductivity is still a subject of controversy. For YBa2_2Cu3_3O6+x_{6+x}, where xx controls the hole-doping level, the most prominent feature in the magnetic excitations spectra is the ``resonance''. Here we show that for underdoped YBa2_2Cu3_3O6.6_{6.6}, where xx and TcT_c are below the optimal values, modest magnetic fields suppress the resonance significantly, much more so for fields approximately perpendicular rather than parallel to the CuO2_2 planes. Our results indicate that the resonance measures pairing and phase coherence, suggesting that magnetism plays an important role in the superconductivity of cuprates. The persistence of a field effect above TcT_c favors mechanisms with preformed pairs in the normal state of underdoped cuprates.Comment: 12 pages, 4 figures, Nature (in press

    Optically induced coherent intra-band dynamics in disordered semiconductors

    Full text link
    On the basis of a tight-binding model for a strongly disordered semiconductor with correlated conduction- and valence band disorder a new coherent dynamical intra-band effect is analyzed. For systems that are excited by two, specially designed ultrashort light-pulse sequences delayed by tau relatively to each other echo-like phenomena are predicted to occur. In addition to the inter-band photon echo which shows up at exactly t=2*tau relative to the first pulse, the system responds with two spontaneous intra-band current pulses preceding and following the appearance of the photon echo. The temporal splitting depends on the electron-hole mass ratio. Calculating the population relaxation rate due to Coulomb scattering, it is concluded that the predicted new dynamical effect should be experimentally observable in an interacting and strongly disordered system, such as the Quantum-Coulomb-Glass.Comment: to be published in Physical Review B15 February 200

    Probing superconducting phase fluctuations from the current noise spectrum of pseudogaped metal-superconductor tunnel junctions

    Full text link
    We study the current noise spectra of a tunnel junction of a metal with strong pairing phase fluctuation and a superconductor. It is shown that there is a characteristic peak in the noise spectrum at the intrinsic Josephson frequency ωJ=2eV\omega_J=2eV when ωJ\omega_J is smaller than the pairing gap but larger than the pairing scattering rate. In the presence of an AC voltage, the tunnelling current noise shows a series of characteristic peaks with increasing DC voltage. Experimental observation of these peaks will give direct evidence of the pair fluctuation in the normal state of high-TcT_c superconductors and from the half width of the peaks the pair decay rate can be estimated.Comment: 4 pages, 3 figure

    Evidence for coexistence of the superconducting gap and the pseudo - gap in Bi-2212 from intrinsic tunneling spectroscopy

    Full text link
    We present intrinsic tunneling spectroscopy measurements on small Bi2_2Sr2_2CaCu2_2O8+x_{8+x} mesas. The tunnel conductance curves show both sharp peaks at the superconducting gap voltage and broad humps representing the cc-axis pseudo-gap. The superconducting gap vanishes at TcT_c, while the pseudo-gap exists both above and below TcT_c. Our observation implies that the superconducting and pseudo-gaps represent different coexisting phenomena.Comment: 5 pages, 4 figure

    Hidden Order in the Cuprates

    Full text link
    We propose that the enigmatic pseudogap phase of cuprate superconductors is characterized by a hidden broken symmetry of d(x^2-y^2)-type. The transition to this state is rounded by disorder, but in the limit that the disorder is made sufficiently small, the pseudogap crossover should reveal itself to be such a transition. The ordered state breaks time-reversal, translational, and rotational symmetries, but it is invariant under the combination of any two. We discuss these ideas in the context of ten specific experimental properties of the cuprates, and make several predictions, including the existence of an as-yet undetected metal-metal transition under the superconducting dome.Comment: 12 pages of RevTeX, 9 eps figure

    Study of psi(2S) decays to X J/psi

    Full text link
    Using J/psi -> mu^+ mu^- decays from a sample of approximately 4 million psi(2S) events collected with the BESI detector, the branching fractions of psi(2S) -> eta J/psi, pi^0 pi^0 J/psi, and anything J/psi normalized to that of psi(2S) -> pi^+ pi^- J/psi are measured. The results are B(psi(2S) -> eta J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.098 \pm 0.005 \pm 0.010, B(psi(2S) -> pi^0 pi^0 J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.570 \pm 0.009 \pm 0.026, and B(psi(2S) -> anything J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 1.867 \pm 0.026 \pm 0.055.Comment: 13 pages, 8 figure

    First observation of psi(2S)-->K_S K_L

    Full text link
    The decay psi(2S)-->K_S K_L is observed for the first time using psi(2S) data collected with the Beijing Spectrometer (BESII) at the Beijing Electron Positron Collider (BEPC); the branching ratio is determined to be B(psi(2S)-->K_S K_L) = (5.24\pm 0.47 \pm 0.48)\times 10^{-5}. Compared with J/psi-->K_S K_L, the psi(2S) branching ratio is enhanced relative to the prediction of the perturbative QCD ``12%'' rule. The result, together with the branching ratios of psi(2S) decays to other pseudoscalar meson pairs (\pi^+\pi^- and K^+K^-), is used to investigate the relative phase between the three-gluon and the one-photon annihilation amplitudes of psi(2S) decays.Comment: 5 pages, 4 figures, 2 tables, submitted to Phys. Rev. Let
    corecore